Fault-Tolerant Quantum Computation Using Large Spin-Cat Codes

Sivaprasad Omanakuttan, Vikas Buchemmavari, Jonathan A. Gross, Ivan H. Deutsch, Milad Marvian
{"title":"Fault-Tolerant Quantum Computation Using Large Spin-Cat Codes","authors":"Sivaprasad Omanakuttan, Vikas Buchemmavari, Jonathan A. Gross, Ivan H. Deutsch, Milad Marvian","doi":"10.1103/prxquantum.5.020355","DOIUrl":null,"url":null,"abstract":"We construct a fault-tolerant quantum error-correcting protocol based on a qubit encoded in a large spin qudit using a spin-cat code, analogous to the continuous-variable cat encoding. With this, we can correct the dominant error sources, namely processes that can be expressed as error operators that are linear or quadratic in the components of angular momentum. Such codes tailored to dominant error sources can exhibit superior thresholds and lower resource overheads when compared to those designed for unstructured noise models. A key component is the <span>cnot</span> gate that preserves the rank of spherical tensor operators. Categorizing the dominant errors as phase and amplitude errors, we demonstrate how phase errors, analogous to phase-flip errors for qubits, can be effectively corrected. Furthermore, we propose a measurement-free error-correction scheme to address amplitude errors without relying on syndrome measurements. Through an in-depth analysis of logical <span>cnot</span> gate errors, we establish that the fault-tolerant threshold for error correction in the spin-cat encoding surpasses that of standard qubit-based encodings. We consider a specific implementation based on neutral-atom quantum computing, with qudits encoded in the nuclear spin of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mi></mi><mn>87</mn></msup><mi>Sr</mi></math>, and show how to generate the universal gate set, including the rank-preserving <span>cnot</span> gate, using quantum control and the Rydberg blockade. These findings pave the way for encoding a qubit in a large spin with the potential to achieve fault tolerance, high threshold, and reduced resource overhead in quantum information processing.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX Quantum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/prxquantum.5.020355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We construct a fault-tolerant quantum error-correcting protocol based on a qubit encoded in a large spin qudit using a spin-cat code, analogous to the continuous-variable cat encoding. With this, we can correct the dominant error sources, namely processes that can be expressed as error operators that are linear or quadratic in the components of angular momentum. Such codes tailored to dominant error sources can exhibit superior thresholds and lower resource overheads when compared to those designed for unstructured noise models. A key component is the cnot gate that preserves the rank of spherical tensor operators. Categorizing the dominant errors as phase and amplitude errors, we demonstrate how phase errors, analogous to phase-flip errors for qubits, can be effectively corrected. Furthermore, we propose a measurement-free error-correction scheme to address amplitude errors without relying on syndrome measurements. Through an in-depth analysis of logical cnot gate errors, we establish that the fault-tolerant threshold for error correction in the spin-cat encoding surpasses that of standard qubit-based encodings. We consider a specific implementation based on neutral-atom quantum computing, with qudits encoded in the nuclear spin of 87Sr, and show how to generate the universal gate set, including the rank-preserving cnot gate, using quantum control and the Rydberg blockade. These findings pave the way for encoding a qubit in a large spin with the potential to achieve fault tolerance, high threshold, and reduced resource overhead in quantum information processing.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用大型自旋蝙蝠代码的容错量子计算
我们构建了一种容错量子纠错协议,该协议基于使用自旋猫编码(类似于连续可变猫编码)在大型自旋量子位中编码的量子位。这样,我们就能纠正主要的误差源,即可以用角动量分量的线性或二次误差算子表示的过程。与针对非结构化噪声模型设计的编码相比,这种针对主要误差源定制的编码能显示出更优越的阈值和更低的资源开销。其中一个关键组件是保留球形张量算子秩的 cnot 门。我们将主要误差分为相位误差和振幅误差,并演示了如何有效纠正相位误差(类似于量子比特的相位翻转误差)。此外,我们还提出了一种无需测量的纠错方案,可在不依赖综合征测量的情况下解决振幅误差问题。通过对逻辑 cnot 门错误的深入分析,我们确定自旋猫编码的容错纠错阈值超过了基于量子比特的标准编码。我们考虑了基于中性原子量子计算的具体实现,用 87Sr 的核自旋编码量子比特,并展示了如何利用量子控制和雷德贝格封锁生成通用门集,包括秩保留 cnot 门。这些发现为在大自旋中编码量子比特铺平了道路,有望在量子信息处理中实现容错、高阈值和减少资源开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reducing Leakage of Single-Qubit Gates for Superconducting Quantum Processors Using Analytical Control Pulse Envelopes Quasiprobabilities in Quantum Thermodynamics and Many-Body Systems Improving Threshold for Fault-Tolerant Color-Code Quantum Computing by Flagged Weight Optimization Progress in Superconductor-Semiconductor Topological Josephson Junctions Mitigating Scattering in a Quantum System Using Only an Integrating Sphere
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1