Shuyi Chu, Zhuangzhuang Cao, Zhongping Su, Jibo Xiao, Jun Li
{"title":"Nitrogen removal and microbial community variation in a shallow constructed wetland with Fe–C porous filter material as substrate","authors":"Shuyi Chu, Zhuangzhuang Cao, Zhongping Su, Jibo Xiao, Jun Li","doi":"10.1002/clen.202300246","DOIUrl":null,"url":null,"abstract":"<p>This study aims to examine the nitrogen removal characteristics and microbial community variation at low hydraulic retention time (HRT) in a shallow constructed wetland (SCW) using iron–carbon (Fe–C) porous filter material (PFM) as substrate. Effects of influent nitrogen forms and chemical oxygen demand (COD)/N ratio on nitrogen removal performance at HRT of 1 day were investigated. Results showed that total nitrogen (TN) removal declined with the decrease of influent NH<sub>4</sub><sup>+</sup>-N-to-NO<sub>3</sub><sup>−</sup>-N ratio. When the influent NH<sub>4</sub><sup>+</sup>-N/NO<sub>3</sub><sup>−</sup>-N ratio was 0.1, TN removal decreased by 15.4% compared with that at ratio of 2.0. The increase of influent COD/N ratio enhanced NO<sub>3</sub><sup>−</sup>-N reduction, and TN removal reached 74.5% at influent COD/N ratio 7.0. The microbial community was analyzed for the biofilm samples on Fe–C PFM at front (WF), middle (WM), and back (WB) of SCW. <i>Proteobacteria</i>, <i>Bacteroidetes</i>, <i>Chloroflexi</i>, and <i>Firmicutes</i> were dominant bacteria phyla. The relative abundance of genera involved in the nitrification and denitrification decreased with the influent flow. The iron autotrophic denitrifying and macromolecular organics degrading bacteria were abundant in the middle and back of SCW. Microbial nitrification and denitrification, plant uptake, and plant synergism contributed to 86.3%, 7.41%, and 19.9% of N removal, respectively. These results demonstrated that the SCW with Fe–C PFM as substrate was efficient in nitrogen removal at low HRT.</p>","PeriodicalId":10306,"journal":{"name":"Clean-soil Air Water","volume":"52 8","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clean-soil Air Water","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/clen.202300246","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to examine the nitrogen removal characteristics and microbial community variation at low hydraulic retention time (HRT) in a shallow constructed wetland (SCW) using iron–carbon (Fe–C) porous filter material (PFM) as substrate. Effects of influent nitrogen forms and chemical oxygen demand (COD)/N ratio on nitrogen removal performance at HRT of 1 day were investigated. Results showed that total nitrogen (TN) removal declined with the decrease of influent NH4+-N-to-NO3−-N ratio. When the influent NH4+-N/NO3−-N ratio was 0.1, TN removal decreased by 15.4% compared with that at ratio of 2.0. The increase of influent COD/N ratio enhanced NO3−-N reduction, and TN removal reached 74.5% at influent COD/N ratio 7.0. The microbial community was analyzed for the biofilm samples on Fe–C PFM at front (WF), middle (WM), and back (WB) of SCW. Proteobacteria, Bacteroidetes, Chloroflexi, and Firmicutes were dominant bacteria phyla. The relative abundance of genera involved in the nitrification and denitrification decreased with the influent flow. The iron autotrophic denitrifying and macromolecular organics degrading bacteria were abundant in the middle and back of SCW. Microbial nitrification and denitrification, plant uptake, and plant synergism contributed to 86.3%, 7.41%, and 19.9% of N removal, respectively. These results demonstrated that the SCW with Fe–C PFM as substrate was efficient in nitrogen removal at low HRT.
期刊介绍:
CLEAN covers all aspects of Sustainability and Environmental Safety. The journal focuses on organ/human--environment interactions giving interdisciplinary insights on a broad range of topics including air pollution, waste management, the water cycle, and environmental conservation. With a 2019 Journal Impact Factor of 1.603 (Journal Citation Reports (Clarivate Analytics, 2020), the journal publishes an attractive mixture of peer-reviewed scientific reviews, research papers, and short communications.
Papers dealing with environmental sustainability issues from such fields as agriculture, biological sciences, energy, food sciences, geography, geology, meteorology, nutrition, soil and water sciences, etc., are welcome.