Song Chen, Xuan Fang, Yilei Xie, Zijian Huang, Weijun Zhan, Junwu Kan, Zhonghua Zhang and Jianping Li
{"title":"A piezoelectric pump with composite chamber: using bluff body to improve its anti-clogging ability","authors":"Song Chen, Xuan Fang, Yilei Xie, Zijian Huang, Weijun Zhan, Junwu Kan, Zhonghua Zhang and Jianping Li","doi":"10.1088/1361-665x/ad5cb0","DOIUrl":null,"url":null,"abstract":"Piezoelectric pumps are widely used in biomedicine, chip cooling, fuel cells and so on. However, existing valve-based piezoelectric pumps suffer from the problem of easy clogging. In order to solve the problem, a piezoelectric pump with composite chamber (PPCC) is proposed. The composite chamber, consisting of drive chamber and flow chamber, which provides the PPCC with excellent output performance by amplifying the compression ratio. Meanwhile, a bluff body is set in the drive chamber, and the vortex flow around the bluff body is able to adsorb air bubbles and other impurities, preventing impurities from entering the drive chamber, the bluff body provides the PPCC with strong anti-clogging ability. Multi-physics field simulation is established, which verifies the PPCC is feasible. The fluid inside the pump chamber is simulated, and it is concluded that the 90-arc bluff body is optimal, favoring the formation of high-speed vortices. Furthermore, a prototype is fabricated and experimentally investigated. The experimental results show that the PPCC has excellent performance in pumping liquid and gas. At 300Vpp, the PPCC delivered a maximum flow rate of 235.9 ml min−1 for air and 24.07 ml min−1 for water. The anti-clogging ability of PPCC is verified through bubble resistance experiments, which demonstrates the composite chamber and bluff body effectively prevent foreign impurities from entering the drive chamber. The PPCC provides a new approach to microfluidic pumping devices.","PeriodicalId":21656,"journal":{"name":"Smart Materials and Structures","volume":"52 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-665x/ad5cb0","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Piezoelectric pumps are widely used in biomedicine, chip cooling, fuel cells and so on. However, existing valve-based piezoelectric pumps suffer from the problem of easy clogging. In order to solve the problem, a piezoelectric pump with composite chamber (PPCC) is proposed. The composite chamber, consisting of drive chamber and flow chamber, which provides the PPCC with excellent output performance by amplifying the compression ratio. Meanwhile, a bluff body is set in the drive chamber, and the vortex flow around the bluff body is able to adsorb air bubbles and other impurities, preventing impurities from entering the drive chamber, the bluff body provides the PPCC with strong anti-clogging ability. Multi-physics field simulation is established, which verifies the PPCC is feasible. The fluid inside the pump chamber is simulated, and it is concluded that the 90-arc bluff body is optimal, favoring the formation of high-speed vortices. Furthermore, a prototype is fabricated and experimentally investigated. The experimental results show that the PPCC has excellent performance in pumping liquid and gas. At 300Vpp, the PPCC delivered a maximum flow rate of 235.9 ml min−1 for air and 24.07 ml min−1 for water. The anti-clogging ability of PPCC is verified through bubble resistance experiments, which demonstrates the composite chamber and bluff body effectively prevent foreign impurities from entering the drive chamber. The PPCC provides a new approach to microfluidic pumping devices.
期刊介绍:
Smart Materials and Structures (SMS) is a multi-disciplinary engineering journal that explores the creation and utilization of novel forms of transduction. It is a leading journal in the area of smart materials and structures, publishing the most important results from different regions of the world, largely from Asia, Europe and North America. The results may be as disparate as the development of new materials and active composite systems, derived using theoretical predictions to complex structural systems, which generate new capabilities by incorporating enabling new smart material transducers. The theoretical predictions are usually accompanied with experimental verification, characterizing the performance of new structures and devices. These systems are examined from the nanoscale to the macroscopic. SMS has a Board of Associate Editors who are specialists in a multitude of areas, ensuring that reviews are fast, fair and performed by experts in all sub-disciplines of smart materials, systems and structures.
A smart material is defined as any material that is capable of being controlled such that its response and properties change under a stimulus. A smart structure or system is capable of reacting to stimuli or the environment in a prescribed manner. SMS is committed to understanding, expanding and dissemination of knowledge in this subject matter.