Anionic Hofmeister Effect Regulated Conductivity in Polyelectrolyte Hydrogels for High-Performance Supercapacitor.

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Small Methods Pub Date : 2024-07-08 DOI:10.1002/smtd.202400532
Qingqing Guo, Huawei Su, Xingxiang Ji, Ligang Gai, Haihui Jiang, Libin Liu
{"title":"Anionic Hofmeister Effect Regulated Conductivity in Polyelectrolyte Hydrogels for High-Performance Supercapacitor.","authors":"Qingqing Guo, Huawei Su, Xingxiang Ji, Ligang Gai, Haihui Jiang, Libin Liu","doi":"10.1002/smtd.202400532","DOIUrl":null,"url":null,"abstract":"<p><p>The Hofmeister effect not only affects the stability and solubility of protein colloids but also has specific effects on the polymer molecules. Here, the impact of the Hofmeister effect on the electrochemical properties of polyelectrolyte hydrogels at room temperature and subzero temperature studied for the first time. Polyelectrolyte hydrogels exhibit an anti-polyelectrolyte effect in low concentrations of ammonium salt, while they exhibit an obvious Hofmeister effect in high concentrations of ammonium salt. Kosmotropic ions demonstrate strong interaction with water molecules or polymer chains, resulting in the reduction of conductivity of polyelectrolyte hydrogels. However, chaotropic ions exhibit weak interactions with water molecules or molecular chains, leading to an increase in conductivity. The Hofmeister effect has a more significant effect on the polyzwitterion electrolyte. The conductivity of polyzwitterion hydrogel soaked in chaotropic ion is up to 6.2 mS cm<sup>-1</sup> at -40 °C. The supercapacitor assembled by polyzwitterion electrolytes maintains a capacitance retention rate of 85% and ≈100% coulomb efficiency after 15 000 cycles at -40 °C. This study elucidates the influence of the Hofmeister effect on conductivity in polyelectrolytes and expands the regulatory approach for improving the performance of energy storage devices.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202400532","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The Hofmeister effect not only affects the stability and solubility of protein colloids but also has specific effects on the polymer molecules. Here, the impact of the Hofmeister effect on the electrochemical properties of polyelectrolyte hydrogels at room temperature and subzero temperature studied for the first time. Polyelectrolyte hydrogels exhibit an anti-polyelectrolyte effect in low concentrations of ammonium salt, while they exhibit an obvious Hofmeister effect in high concentrations of ammonium salt. Kosmotropic ions demonstrate strong interaction with water molecules or polymer chains, resulting in the reduction of conductivity of polyelectrolyte hydrogels. However, chaotropic ions exhibit weak interactions with water molecules or molecular chains, leading to an increase in conductivity. The Hofmeister effect has a more significant effect on the polyzwitterion electrolyte. The conductivity of polyzwitterion hydrogel soaked in chaotropic ion is up to 6.2 mS cm-1 at -40 °C. The supercapacitor assembled by polyzwitterion electrolytes maintains a capacitance retention rate of 85% and ≈100% coulomb efficiency after 15 000 cycles at -40 °C. This study elucidates the influence of the Hofmeister effect on conductivity in polyelectrolytes and expands the regulatory approach for improving the performance of energy storage devices.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于高性能超级电容器的聚电解质水凝胶中的阴离子霍夫迈斯特效应调节电导率
霍夫迈斯特效应不仅会影响蛋白质胶体的稳定性和溶解度,还会对聚合物分子产生特定影响。本文首次研究了霍夫迈斯特效应对室温和零下温度下聚电解质水凝胶电化学特性的影响。聚电解质水凝胶在低浓度铵盐中表现出抗聚电解质效应,而在高浓度铵盐中则表现出明显的霍夫迈斯特效应。各向同性离子与水分子或聚合物链相互作用强烈,导致聚电解质水凝胶的导电性降低。然而,混沌各向同性离子与水分子或分子链的相互作用较弱,从而导致电导率增加。霍夫迈斯特效应对聚齐聚醚电解质的影响更为显著。在-40 °C时,浸泡在混沌离子中的聚齐聚硅氧烷水凝胶的电导率高达6.2 mS cm-1。聚齐维特电解质组装的超级电容器在-40 °C下循环15 000次后,电容保持率为85%,库仑效率≈100%。这项研究阐明了霍夫迈斯特效应对聚电解质电导率的影响,拓展了提高储能设备性能的调节方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
期刊最新文献
Revealing the Structural Intricacies of Biomembrane-Interfaced Emulsions with Small- and Ultra-Small-Angle Neutron Scattering. Wireless Optogenetic Targeting Nociceptors Helps Host Cells Win the Competitive Colonization in Implant-Associated Infections. Amorphous-Crystalline Heterostructured Nanoporous High-Entropy Alloys for High-Efficiency pH-Universal Water Splitting. Flexible Scaffold Modulation of Spatial Structure and Function of Hierarchically Porous Nanoparticle@ZIF-8 Composites to Enhance Field Deployable Disease Diagnostics. Promoted Hydrogen Peroxide Production from Pure Water on g-C3N4 with Nitrogen Defects Constructed through Solvent-Precursor Interactions: Exploring a Complex Story in Piezo-Photocatalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1