Domain Generalization with Correlated Style Uncertainty.

Zheyuan Zhang, Bin Wang, Debesh Jha, Ugur Demir, Ulas Bagci
{"title":"Domain Generalization with Correlated Style Uncertainty.","authors":"Zheyuan Zhang, Bin Wang, Debesh Jha, Ugur Demir, Ulas Bagci","doi":"10.1109/wacv57701.2024.00200","DOIUrl":null,"url":null,"abstract":"<p><p>Domain generalization (DG) approaches intend to extract domain invariant features that can lead to a more robust deep learning model. In this regard, style augmentation is a strong DG method taking advantage of instance-specific feature statistics containing informative style characteristics to synthetic novel domains. While it is one of the state-of-the-art methods, prior works on style augmentation have either disregarded the interdependence amongst distinct feature channels or have solely constrained style augmentation to linear interpolation. To address these research gaps, in this work, we introduce a novel augmentation approach, named Correlated Style Uncertainty (CSU), surpassing the limitations of linear interpolation in style statistic space and simultaneously preserving vital correlation information. Our method's efficacy is established through extensive experimentation on diverse cross-domain computer vision and medical imaging classification tasks: PACS, Office-Home, and Camelyon17 datasets, and the Duke-Market1501 instance retrieval task. The results showcase a remarkable improvement margin over existing state-of-the-art techniques. The source code is available https://github.com/freshman97/CSU.</p>","PeriodicalId":73325,"journal":{"name":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11230655/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/wacv57701.2024.00200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/9 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Domain generalization (DG) approaches intend to extract domain invariant features that can lead to a more robust deep learning model. In this regard, style augmentation is a strong DG method taking advantage of instance-specific feature statistics containing informative style characteristics to synthetic novel domains. While it is one of the state-of-the-art methods, prior works on style augmentation have either disregarded the interdependence amongst distinct feature channels or have solely constrained style augmentation to linear interpolation. To address these research gaps, in this work, we introduce a novel augmentation approach, named Correlated Style Uncertainty (CSU), surpassing the limitations of linear interpolation in style statistic space and simultaneously preserving vital correlation information. Our method's efficacy is established through extensive experimentation on diverse cross-domain computer vision and medical imaging classification tasks: PACS, Office-Home, and Camelyon17 datasets, and the Duke-Market1501 instance retrieval task. The results showcase a remarkable improvement margin over existing state-of-the-art techniques. The source code is available https://github.com/freshman97/CSU.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有相关风格不确定性的领域泛化。
领域泛化(DG)方法旨在提取领域不变特征,从而建立更强大的深度学习模型。在这方面,风格增强是一种强大的 DG 方法,它利用包含信息风格特征的特定实例特征统计数据来合成新领域。虽然它是最先进的方法之一,但之前关于风格增强的研究要么忽略了不同特征通道之间的相互依存关系,要么将风格增强仅仅局限于线性插值。为了弥补这些研究空白,我们在这项工作中引入了一种名为 "相关风格不确定性"(CSU)的新型增强方法,它超越了线性插值在风格统计空间中的局限性,同时保留了重要的相关信息。通过在各种跨领域计算机视觉和医学影像分类任务中的广泛实验,我们证明了这种方法的有效性:PACS、Office-Home 和 Camelyon17 数据集,以及 Duke-Market1501 实例检索任务。结果表明,与现有的最先进技术相比,该技术的改进幅度非常明显。源代码见 https://github.com/freshman97/CSU。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ordinal Classification with Distance Regularization for Robust Brain Age Prediction. Brainomaly: Unsupervised Neurologic Disease Detection Utilizing Unannotated T1-weighted Brain MR Images. PathLDM: Text conditioned Latent Diffusion Model for Histopathology. Domain Generalization with Correlated Style Uncertainty. Semantic-aware Video Representation for Few-shot Action Recognition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1