{"title":"Non-Central Phase Matching Second Harmonic Generation by Using High Power Femtosecond Ytterbium-Doped Fiber Laser","authors":"Yu Liu;Shuanggen Zhang;Yangbo Bai;Wei Yan;Bochi Guo;Hui Zhou","doi":"10.1109/JQE.2024.3412091","DOIUrl":null,"url":null,"abstract":"Femtosecond laser has unique advantages in frequency conversion owing to broadband spectrum and ultra-high peak power. Here, the authors demonstrate the non-central phase matching second harmonic (SH) process by utilizing femtosecond ytterbium-doped fiber (YDF) laser. Numerical solution of the coupled wave equations for the process of femtosecond pulses SH indicates that the non-central phase matching is determined by the spectral broadening and frequency shift. Pumped by Watt-level 1040 nm femtosecond pluses, the period quasi-phase matching at the 1064 nm wavelength, the fundamental frequency (FF) spectrum broadened up to 34.7 nm width and red shifted about 6 nm, and the non-central phase matching SH with PPKTP crystal waveguide generates at around 523 nm. The experimental measurements confirm the theoretical predictions, and offer a deeper understanding of nonlinear optical effects. The non-central phase matching enables flexible frequency conversion with potential applications in ultrafast optics.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"60 4","pages":"1-5"},"PeriodicalIF":2.2000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10552762/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Femtosecond laser has unique advantages in frequency conversion owing to broadband spectrum and ultra-high peak power. Here, the authors demonstrate the non-central phase matching second harmonic (SH) process by utilizing femtosecond ytterbium-doped fiber (YDF) laser. Numerical solution of the coupled wave equations for the process of femtosecond pulses SH indicates that the non-central phase matching is determined by the spectral broadening and frequency shift. Pumped by Watt-level 1040 nm femtosecond pluses, the period quasi-phase matching at the 1064 nm wavelength, the fundamental frequency (FF) spectrum broadened up to 34.7 nm width and red shifted about 6 nm, and the non-central phase matching SH with PPKTP crystal waveguide generates at around 523 nm. The experimental measurements confirm the theoretical predictions, and offer a deeper understanding of nonlinear optical effects. The non-central phase matching enables flexible frequency conversion with potential applications in ultrafast optics.
期刊介绍:
The IEEE Journal of Quantum Electronics is dedicated to the publication of manuscripts reporting novel experimental or theoretical results in the broad field of the science and technology of quantum electronics. The Journal comprises original contributions, both regular papers and letters, describing significant advances in the understanding of quantum electronics phenomena or the demonstration of new devices, systems, or applications. Manuscripts reporting new developments in systems and applications must emphasize quantum electronics principles or devices. The scope of JQE encompasses the generation, propagation, detection, and application of coherent electromagnetic radiation having wavelengths below one millimeter (i.e., in the submillimeter, infrared, visible, ultraviolet, etc., regions). Whether the focus of a manuscript is a quantum-electronic device or phenomenon, the critical factor in the editorial review of a manuscript is the potential impact of the results presented on continuing research in the field or on advancing the technological base of quantum electronics.