Xuhan Liu, Jun Zhang, Zhonghuai Hou, Yi Isaac Yang, Yi Qin Gao
{"title":"From predicting to decision making: Reinforcement learning in biomedicine","authors":"Xuhan Liu, Jun Zhang, Zhonghuai Hou, Yi Isaac Yang, Yi Qin Gao","doi":"10.1002/wcms.1723","DOIUrl":null,"url":null,"abstract":"<p>Reinforcement learning (RL) is one important branch of artificial intelligence (AI), which intuitively imitates the learning style of human beings. It is commonly derived from solving game playing problems and is extensively used for decision-making, control and optimization problems. It has been extensively applied for solving complicated problems with the property of Markov decision-making processes. With data accumulation and comprehensive analysis, researchers are not only satisfied with predicting the results for experimental systems but also hope to design or control them for the sake of obtaining the desired properties or functions. RL is potentially facilitated to solve a large number of complicated biological and chemical problems, because they could be decomposed into multi-step decision-making process. In practice, substantial progress has been made in the application of RL to the field of biomedicine. In this paper, we will first give a brief description about RL, including its definition, basic theory and different type of methods. Then we will review some detailed applications in various domains, for example, molecular design, reaction planning, molecular simulation and etc. In the end, we will summarize the essentialities of RL approaches to solve more diverse problems compared with other machine learning methods and also outlook the possible trends to overcome their limitations in the future.</p><p>This article is categorized under:\n </p>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":"14 4","pages":""},"PeriodicalIF":16.8000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Computational Molecular Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/wcms.1723","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Reinforcement learning (RL) is one important branch of artificial intelligence (AI), which intuitively imitates the learning style of human beings. It is commonly derived from solving game playing problems and is extensively used for decision-making, control and optimization problems. It has been extensively applied for solving complicated problems with the property of Markov decision-making processes. With data accumulation and comprehensive analysis, researchers are not only satisfied with predicting the results for experimental systems but also hope to design or control them for the sake of obtaining the desired properties or functions. RL is potentially facilitated to solve a large number of complicated biological and chemical problems, because they could be decomposed into multi-step decision-making process. In practice, substantial progress has been made in the application of RL to the field of biomedicine. In this paper, we will first give a brief description about RL, including its definition, basic theory and different type of methods. Then we will review some detailed applications in various domains, for example, molecular design, reaction planning, molecular simulation and etc. In the end, we will summarize the essentialities of RL approaches to solve more diverse problems compared with other machine learning methods and also outlook the possible trends to overcome their limitations in the future.
期刊介绍:
Computational molecular sciences harness the power of rigorous chemical and physical theories, employing computer-based modeling, specialized hardware, software development, algorithm design, and database management to explore and illuminate every facet of molecular sciences. These interdisciplinary approaches form a bridge between chemistry, biology, and materials sciences, establishing connections with adjacent application-driven fields in both chemistry and biology. WIREs Computational Molecular Science stands as a platform to comprehensively review and spotlight research from these dynamic and interconnected fields.