Molecular quantum chemistry has seen enormous progress in the last few decades thanks to more advanced and sophisticated numerical techniques and computing power. Following the recent interest in extending these capabilities to condensed-phase problems, we summarize basic knowledge of condensed-phase quantum chemistry for readers with experience in molecular quantum chemistry. We highlight recent efforts in this direction, including solving the electron repulsion integrals bottleneck, implementing hybrid density functional theory and wavefunction methods, and simulating lattice dynamics for periodic systems within atom-centered basis sets. Many computational techniques presented here are inspired by the extensive method developments rooted in quantum chemistry. In this Focus Article, we selectively focus on the computational techniques rooted in molecular quantum chemistry, emphasize some challenges, and point out open questions. We hope our perspectives will encourage researchers to pursue this exciting and promising research avenue.