{"title":"Theoretical Investigation of Singlet Fission Processes in Organic Photovoltaics","authors":"Zhangxia Wang, Xiaoyu Xie, Haibo Ma","doi":"10.1002/wcms.70002","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Singlet fission (SF) is a down-conversion photophysical process involving transforming a high-energy singlet state into two lower-energy triplet excitons. It has attracted extensive attention over the past two decades because of its potential to break the power conversion limit in photovoltaic devices. However, this material's complex, strongly correlated electronic properties and its various packing structures pose challenges to understanding its intrinsic mechanisms and limiting theory-guided molecular design. In this review, we summarize our theoretical work by studying the electronic structure, exciton-phonon structure and low-excited state dynamics of several typical materials, clearly elucidating the microscopic mechanism of the SF process. Subsequently, based on an in-depth understanding of the mechanism, we use the novel macrocyclic framework to design intramolecular SF candidates and hope to improve the energy conversion efficiency of SF-based photovoltaic devices.</p>\n </div>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":"15 1","pages":""},"PeriodicalIF":16.8000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Computational Molecular Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/wcms.70002","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Singlet fission (SF) is a down-conversion photophysical process involving transforming a high-energy singlet state into two lower-energy triplet excitons. It has attracted extensive attention over the past two decades because of its potential to break the power conversion limit in photovoltaic devices. However, this material's complex, strongly correlated electronic properties and its various packing structures pose challenges to understanding its intrinsic mechanisms and limiting theory-guided molecular design. In this review, we summarize our theoretical work by studying the electronic structure, exciton-phonon structure and low-excited state dynamics of several typical materials, clearly elucidating the microscopic mechanism of the SF process. Subsequently, based on an in-depth understanding of the mechanism, we use the novel macrocyclic framework to design intramolecular SF candidates and hope to improve the energy conversion efficiency of SF-based photovoltaic devices.
期刊介绍:
Computational molecular sciences harness the power of rigorous chemical and physical theories, employing computer-based modeling, specialized hardware, software development, algorithm design, and database management to explore and illuminate every facet of molecular sciences. These interdisciplinary approaches form a bridge between chemistry, biology, and materials sciences, establishing connections with adjacent application-driven fields in both chemistry and biology. WIREs Computational Molecular Science stands as a platform to comprehensively review and spotlight research from these dynamic and interconnected fields.