Nikhil R. Chari, Shersingh Joseph Tumber-Dávila, Richard P. Phillips, Taryn L. Bauerle, Melanie Brunn, Benjamin D. Hafner, Tamir Klein, Sophie Obersteiner, Michaela K. Reay, Sami Ullah, Benton N. Taylor
{"title":"Estimating the global root exudate carbon flux","authors":"Nikhil R. Chari, Shersingh Joseph Tumber-Dávila, Richard P. Phillips, Taryn L. Bauerle, Melanie Brunn, Benjamin D. Hafner, Tamir Klein, Sophie Obersteiner, Michaela K. Reay, Sami Ullah, Benton N. Taylor","doi":"10.1007/s10533-024-01161-z","DOIUrl":null,"url":null,"abstract":"<div><p>Root exudation, the export of low-molecular weight organic carbon (C) from living plant roots to soil, influences microbial activity, nutrient availability, and ecosystem feedbacks to climate change, but the magnitude of this C flux at ecosystem and global scales is largely unknown. Here, we synthesize in situ measurements of root exudation rates and couple those to estimates of fine root biomass to estimate global and biome-level root exudate C fluxes. We estimate a global root exudate flux of 13.4 (10.1–20.2) Pg C y<sup>−1</sup>, or about 9% (7–14%) of global annual gross primary productivity. We did not find differences in root mass-specific exudation rates among biomes, though total exudate fluxes are estimated to be greatest in grasslands owing to their high density of absorptive root biomass. Our synthesis highlights the global importance of root exudates in the terrestrial C cycle and identifies regions where more in situ measurements are needed to improve future estimates of root exudate C fluxes.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"167 7","pages":"895 - 908"},"PeriodicalIF":3.9000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-024-01161-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogeochemistry","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10533-024-01161-z","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Root exudation, the export of low-molecular weight organic carbon (C) from living plant roots to soil, influences microbial activity, nutrient availability, and ecosystem feedbacks to climate change, but the magnitude of this C flux at ecosystem and global scales is largely unknown. Here, we synthesize in situ measurements of root exudation rates and couple those to estimates of fine root biomass to estimate global and biome-level root exudate C fluxes. We estimate a global root exudate flux of 13.4 (10.1–20.2) Pg C y−1, or about 9% (7–14%) of global annual gross primary productivity. We did not find differences in root mass-specific exudation rates among biomes, though total exudate fluxes are estimated to be greatest in grasslands owing to their high density of absorptive root biomass. Our synthesis highlights the global importance of root exudates in the terrestrial C cycle and identifies regions where more in situ measurements are needed to improve future estimates of root exudate C fluxes.
期刊介绍:
Biogeochemistry publishes original and synthetic papers dealing with biotic controls on the chemistry of the environment, or with the geochemical control of the structure and function of ecosystems. Cycles are considered, either of individual elements or of specific classes of natural or anthropogenic compounds in ecosystems. Particular emphasis is given to coupled interactions of element cycles. The journal spans from the molecular to global scales to elucidate the mechanisms driving patterns in biogeochemical cycles through space and time. Studies on both natural and artificial ecosystems are published when they contribute to a general understanding of biogeochemistry.