Localized surface plasmon-enhanced nanorod micro-LEDs with Ag nanoparticles embedded in insulating and planarizing spin-on glass

IF 3.5 2区 物理与天体物理 Q2 PHYSICS, APPLIED Applied Physics Letters Pub Date : 2024-07-08 DOI:10.1063/5.0211870
Aoqi Fang, Jixin Liu, Zaifa Du, Penghao Tang, Yiyang Xie, Weiling Guo, Hao Xu, Jie Sun
{"title":"Localized surface plasmon-enhanced nanorod micro-LEDs with Ag nanoparticles embedded in insulating and planarizing spin-on glass","authors":"Aoqi Fang, Jixin Liu, Zaifa Du, Penghao Tang, Yiyang Xie, Weiling Guo, Hao Xu, Jie Sun","doi":"10.1063/5.0211870","DOIUrl":null,"url":null,"abstract":"To enhance the emission of GaN-based Micro-LEDs (μLEDs), we etched uniform nanorods (NRs) on the μLED surface and filled the nanorod gaps with spin-on glass (SOG) containing mixed Ag nanoparticles (NPs). The nanorod structure creates a conducive environment for close interaction between Ag NPs and quantum wells (QWs), facilitating the coupling of Ag NPs as localized surface plasmons (LSPs) with the QWs to enhance light emission. The SOG acts as an insulating layer between Ag NPs and NRs, preventing electron leakage, while also serving as a planarization material for the nanorod structure. This configuration allows for the fabrication of a planar Indium Tin Oxide layer without short-circuiting the nanorod structure. Compared to traditional planar Micro-LEDs, NR-μLEDs with SOG-encased Ag NPs exhibit a 50% increase in electroluminescence (EL) intensity and a 56% increase in photoluminescence (PL) intensity. This work paves the way for broader applications of LSP in μLEDs.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0211870","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

To enhance the emission of GaN-based Micro-LEDs (μLEDs), we etched uniform nanorods (NRs) on the μLED surface and filled the nanorod gaps with spin-on glass (SOG) containing mixed Ag nanoparticles (NPs). The nanorod structure creates a conducive environment for close interaction between Ag NPs and quantum wells (QWs), facilitating the coupling of Ag NPs as localized surface plasmons (LSPs) with the QWs to enhance light emission. The SOG acts as an insulating layer between Ag NPs and NRs, preventing electron leakage, while also serving as a planarization material for the nanorod structure. This configuration allows for the fabrication of a planar Indium Tin Oxide layer without short-circuiting the nanorod structure. Compared to traditional planar Micro-LEDs, NR-μLEDs with SOG-encased Ag NPs exhibit a 50% increase in electroluminescence (EL) intensity and a 56% increase in photoluminescence (PL) intensity. This work paves the way for broader applications of LSP in μLEDs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在绝缘和平面化自旋玻璃中嵌入银纳米粒子的局部表面等离子体增强型纳米棒微型 LED
为了增强氮化镓基微型 LED(μLED)的发射,我们在μLED 表面蚀刻了均匀的纳米棒(NR),并用含有混合银纳米粒子(NPs)的自旋玻璃(SOG)填充纳米棒间隙。纳米棒结构为银纳米粒子和量子阱(QWs)之间的密切相互作用创造了有利环境,促进了银纳米粒子作为局部表面质子(LSPs)与量子阱的耦合,从而增强了光发射。SOG 可作为 Ag NPs 和 NRs 之间的绝缘层,防止电子泄漏,同时还可作为纳米棒结构的平面化材料。这种结构可以在不使纳米棒结构短路的情况下制造出平面氧化铟锡层。与传统的平面 Micro-LED 相比,采用 SOG 封装银 NP 的 NR-μLED 的电致发光(EL)强度提高了 50%,光致发光(PL)强度提高了 56%。这项工作为 LSP 在μLED 中的更广泛应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Physics Letters
Applied Physics Letters 物理-物理:应用
CiteScore
6.40
自引率
10.00%
发文量
1821
审稿时长
1.6 months
期刊介绍: Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology. In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics. APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field. Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.
期刊最新文献
A sulfur-infiltrated mesoporous silica/CNT composite-based functional interlayer for enhanced Li–S battery performance Quantitative analysis of atomic migration in lithium-ion conducting oxide solid electrolytes Micromagnetic simulation of the magnetization-controlled critical current in a S–(S/F)–S superconducting switch Electrical transport characteristics of atomic contact and nanogap dynamically formed by electromigration Generation of high-energy self-mode-locked pulses in a Tm-doped fiber laser
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1