AlScN-on-SiC microelectromechanical Lamb wave resonators operating at high temperature up to 800 °C

IF 3.5 2区 物理与天体物理 Q2 PHYSICS, APPLIED Applied Physics Letters Pub Date : 2024-07-08 DOI:10.1063/5.0185606
Wen Sui, Philip X.-L. Feng
{"title":"AlScN-on-SiC microelectromechanical Lamb wave resonators operating at high temperature up to 800 °C","authors":"Wen Sui, Philip X.-L. Feng","doi":"10.1063/5.0185606","DOIUrl":null,"url":null,"abstract":"We report on the experimental demonstration of aluminum scandium nitride (AlScN)-on-cubic silicon carbide (3C-SiC) Lamb wave resonators (LWRs) realized via microelectromechanical systems (MEMS) technology, operating at high temperature (T) up to T = 800 °C, while retaining robust electromechanical resonances at ∼27 MHz and good quality factor of Q ≈ 900 even at 800 °C. Measured resonances exhibit clear consistency and stability during heating and cooling processes, validating the AlScN-on-SiC LWRs can operate at high T up to 800 °C without noticeable degradation in moderate vacuum (∼20 mTorr). Even after undergoing four complete thermal cycles (heating from 23 to 800 °C and then cooling down to 23 °C), the devices exhibit robust resonance behavior, suggesting excellent stability and suitability for high-temperature applications. Q starts to decline as the temperature exceeds 400 °C, which can be attributed to energy dissipation mechanisms stemming from thermoelastic damping and intrinsic material loss originating from phonon–phonon interactions.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0185606","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We report on the experimental demonstration of aluminum scandium nitride (AlScN)-on-cubic silicon carbide (3C-SiC) Lamb wave resonators (LWRs) realized via microelectromechanical systems (MEMS) technology, operating at high temperature (T) up to T = 800 °C, while retaining robust electromechanical resonances at ∼27 MHz and good quality factor of Q ≈ 900 even at 800 °C. Measured resonances exhibit clear consistency and stability during heating and cooling processes, validating the AlScN-on-SiC LWRs can operate at high T up to 800 °C without noticeable degradation in moderate vacuum (∼20 mTorr). Even after undergoing four complete thermal cycles (heating from 23 to 800 °C and then cooling down to 23 °C), the devices exhibit robust resonance behavior, suggesting excellent stability and suitability for high-temperature applications. Q starts to decline as the temperature exceeds 400 °C, which can be attributed to energy dissipation mechanisms stemming from thermoelastic damping and intrinsic material loss originating from phonon–phonon interactions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在高达 800 °C 高温下工作的 AlScN-on-SiC 微机电 Lamb 波谐振器
我们报告了通过微机电系统(MEMS)技术实现的氮化铝钪(AlScN)-立方碳化硅(3C-SiC)兰姆波谐振器(LWRs)的实验演示,该谐振器可在高达 T = 800 °C 的高温(T)下工作,同时在 ∼27 MHz 的频率下保持稳健的机电共振,即使在 800 °C 下也能保持 Q ≈ 900 的良好品质因数。测量到的共振在加热和冷却过程中表现出明显的一致性和稳定性,验证了 AlScN-on-SiC LWR 可以在高达 800 °C 的高温下工作,而不会在中等真空(20 mTorr)条件下出现明显的衰减。即使经历了四次完整的热循环(从 23 ℃ 加热到 800 ℃,然后冷却到 23 ℃),器件仍能表现出稳健的共振行为,这表明器件具有出色的稳定性,适合高温应用。当温度超过 400 ℃ 时,Q 值开始下降,这可归因于热弹性阻尼的能量耗散机制和声子-声子相互作用产生的内在材料损耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Physics Letters
Applied Physics Letters 物理-物理:应用
CiteScore
6.40
自引率
10.00%
发文量
1821
审稿时长
1.6 months
期刊介绍: Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology. In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics. APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field. Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.
期刊最新文献
A sulfur-infiltrated mesoporous silica/CNT composite-based functional interlayer for enhanced Li–S battery performance Quantitative analysis of atomic migration in lithium-ion conducting oxide solid electrolytes Micromagnetic simulation of the magnetization-controlled critical current in a S–(S/F)–S superconducting switch Electrical transport characteristics of atomic contact and nanogap dynamically formed by electromigration Generation of high-energy self-mode-locked pulses in a Tm-doped fiber laser
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1