Photoinduced Ordered Growth of Copper-Doped Polyaniline Nanotubes: A Method to Improve the Catalytic Activity for C-N Coupling Reactions.

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Materials & Interfaces Pub Date : 2024-07-24 Epub Date: 2024-07-10 DOI:10.1021/acsami.4c05028
Ying Chen, Yiyang Zhang, Hongwei Zhou, Lei Yu
{"title":"Photoinduced Ordered Growth of Copper-Doped Polyaniline Nanotubes: A Method to Improve the Catalytic Activity for C-N Coupling Reactions.","authors":"Ying Chen, Yiyang Zhang, Hongwei Zhou, Lei Yu","doi":"10.1021/acsami.4c05028","DOIUrl":null,"url":null,"abstract":"<p><p>Polyaniline-supported metal nanoparticles (M@PANIs) have been widely employed as catalysts for organic reactions. Traditionally, the catalytic activities of the materials can be improved by introducing functional groups onto the aniline monomers, but it may enhance the catalyst cost and reduce the production yield of the material. This work reports a new strategy for improving the catalytic activity of M@PANIs. It was found that induced by visible light in the presence of a polymeric carbon nitride catalyst and copper dopant, the oxidative polymerization of simple aniline occurred slowly and orderly to produce the copper-doped polyaniline nanotubes. The unique tubular structure protected the catalytically active Cu(I) inside and endowed even more sufficient contact of the catalytic sites with reactants so that the material exhibited excellent catalytic performances in C-N coupling reactions.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c05028","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Polyaniline-supported metal nanoparticles (M@PANIs) have been widely employed as catalysts for organic reactions. Traditionally, the catalytic activities of the materials can be improved by introducing functional groups onto the aniline monomers, but it may enhance the catalyst cost and reduce the production yield of the material. This work reports a new strategy for improving the catalytic activity of M@PANIs. It was found that induced by visible light in the presence of a polymeric carbon nitride catalyst and copper dopant, the oxidative polymerization of simple aniline occurred slowly and orderly to produce the copper-doped polyaniline nanotubes. The unique tubular structure protected the catalytically active Cu(I) inside and endowed even more sufficient contact of the catalytic sites with reactants so that the material exhibited excellent catalytic performances in C-N coupling reactions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
掺铜聚苯胺纳米管的光诱导有序生长:提高 C-N 偶联反应催化活性的方法。
聚苯胺支撑的金属纳米颗粒(M@PANIs)已被广泛用作有机反应的催化剂。传统上,可以通过在苯胺单体上引入官能团来提高材料的催化活性,但这可能会提高催化剂成本并降低材料的产量。这项工作报告了一种提高 M@PANIs 催化活性的新策略。研究发现,在聚合物氮化碳催化剂和铜掺杂剂的作用下,在可见光的诱导下,单苯胺缓慢而有序地发生氧化聚合,生成掺铜的聚苯胺纳米管。独特的管状结构保护了内部具有催化活性的 Cu(I),并使催化位点与反应物的接触更加充分,因此该材料在 C-N 偶联反应中表现出优异的催化性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
期刊最新文献
Role of Surface Tension on Heat Feedback and Power from Energetic Composites. Study on Deformation Behavior of Glass in High-temperature Molding for Massive Unit Microlens Arrays. Triterpene-Based Prodrug for Self-Boosted Drug Release and Targeted Oral Squamous Cell Carcinoma Chemotherapy. Ferroelectric Al0.85Sc0.15N and Hf0.5Zr0.5O2 Domain Switching Dynamics. Flexible Arc-Shaped Micro-Fiber Bragg Grating Array Three-Dimensional Tactile Sensor for Fingertip Signals Detection and Human Pulse Monitoring.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1