Optimization of a Novel Engineered Ecosystem Integrating Carbon, Nitrogen, Phosphorus, and Sulfur Biotransformation for Saline Wastewater Treatment Using an Interpretable Machine Learning Approach.

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL 环境科学与技术 Pub Date : 2024-07-23 Epub Date: 2024-07-10 DOI:10.1021/acs.est.4c03160
Jinqi Jiang, Xiang Xiang, Qinhao Zhou, Lichang Zhou, Xinqi Bi, Samir Kumar Khanal, Zongping Wang, Guanghao Chen, Gang Guo
{"title":"Optimization of a Novel Engineered Ecosystem Integrating Carbon, Nitrogen, Phosphorus, and Sulfur Biotransformation for Saline Wastewater Treatment Using an Interpretable Machine Learning Approach.","authors":"Jinqi Jiang, Xiang Xiang, Qinhao Zhou, Lichang Zhou, Xinqi Bi, Samir Kumar Khanal, Zongping Wang, Guanghao Chen, Gang Guo","doi":"10.1021/acs.est.4c03160","DOIUrl":null,"url":null,"abstract":"<p><p>The denitrifying sulfur (S) conversion-associated enhanced biological phosphorus removal (DS-EBPR) process for treating saline wastewater is characterized by its unique microbial ecology that integrates carbon (C), nitrogen (N), phosphorus (P), and S biotransformation. However, operational instability arises due to the numerous parameters and intricates bacterial interactions. This study introduces a two-stage interpretable machine learning approach to predict S conversion-driven P removal efficiency and optimize DS-EBPR process. Stage one utilized the XGBoost regression model, achieving an <i>R</i><sup>2</sup> value of 0.948 for predicting sulfate reduction (SR) intensity from anaerobic parameters with feature engineering. Stage two involved the CatBoost classification and regression model integrating anoxic parameters with the predicted SR values for predicting P removal, reaching an accuracy of 94% and an <i>R</i><sup>2</sup> value of 0.93, respectively. This study identified key environmental factors, including SR intensity (20-45 mg S/L), influent P concentration (<9.0 mg P/L), mixed liquor volatile suspended solids (MLVSS)/mixed liquor suspended solids (MLSS) ratio (0.55-0.72), influent C/S ratio (0.5-1.0), anoxic reaction time (5-6 h), and MLSS concentration (>6.50 g/L). A user-friendly graphic interface was developed to facilitate easier optimization and control. This approach streamlines the determination of optimal conditions for enhancing P removal in the DS-EBPR process.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":null,"pages":null},"PeriodicalIF":10.8000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c03160","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The denitrifying sulfur (S) conversion-associated enhanced biological phosphorus removal (DS-EBPR) process for treating saline wastewater is characterized by its unique microbial ecology that integrates carbon (C), nitrogen (N), phosphorus (P), and S biotransformation. However, operational instability arises due to the numerous parameters and intricates bacterial interactions. This study introduces a two-stage interpretable machine learning approach to predict S conversion-driven P removal efficiency and optimize DS-EBPR process. Stage one utilized the XGBoost regression model, achieving an R2 value of 0.948 for predicting sulfate reduction (SR) intensity from anaerobic parameters with feature engineering. Stage two involved the CatBoost classification and regression model integrating anoxic parameters with the predicted SR values for predicting P removal, reaching an accuracy of 94% and an R2 value of 0.93, respectively. This study identified key environmental factors, including SR intensity (20-45 mg S/L), influent P concentration (<9.0 mg P/L), mixed liquor volatile suspended solids (MLVSS)/mixed liquor suspended solids (MLSS) ratio (0.55-0.72), influent C/S ratio (0.5-1.0), anoxic reaction time (5-6 h), and MLSS concentration (>6.50 g/L). A user-friendly graphic interface was developed to facilitate easier optimization and control. This approach streamlines the determination of optimal conditions for enhancing P removal in the DS-EBPR process.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用可解释的机器学习方法优化集碳、氮、磷和硫生物转化于一体的新型工程生态系统,以处理含盐废水。
用于处理含盐废水的反硝化硫(S)转化相关强化生物除磷(DS-EBPR)工艺的特点是其独特的微生物生态学,它将碳(C)、氮(N)、磷(P)和 S 的生物转化融为一体。然而,由于参数繁多,细菌相互作用错综复杂,导致运行不稳定。本研究采用两阶段可解释的机器学习方法来预测 S 转化驱动的 P 去除效率,并优化 DS-EBPR 过程。第一阶段利用 XGBoost 回归模型,通过特征工程从厌氧参数预测硫酸盐还原(SR)强度的 R2 值达到 0.948。第二阶段采用 CatBoost 分类和回归模型,将缺氧参数与预测的 SR 值进行整合,以预测 P 的去除率,准确率分别达到 94% 和 0.93 的 R2 值。这项研究确定了关键的环境因素,包括 SR 强度(20-45 毫克 S/L)、进水 P 浓度(6.50 克/升)。为便于优化和控制,开发了一个用户友好型图形界面。这种方法简化了确定在 DS-EBPR 过程中提高 P 去除率的最佳条件的过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
期刊最新文献
Resource Recovery from Wastewater: What, Why, and Where? Competitive Binding Kinetics of Methylmercury-Cysteine with Dissolved Organic Matter: Critical Impacts of Thiols on Adsorption and Uptake of Methylmercury by Algae. Hyperlocal Air Pollution Mapping: A Scalable Transfer Learning LUR Approach for Mobile Monitoring. Metagenomics and Stable Isotopes Uncover the Augmented Sulfide-Driven Autotrophic Denitrification in a Seasonally Hypoxic, Sulfate-Abundant Reservoir. Enhancing Water Tolerance and N2 Selectivity in NH3–SCR Catalysts by Protecting Mn Oxide Nanoparticles in a Silicalite-1 Layer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1