Generative Artificial Intelligence for Designing Multi-Scale Hydrogen Fuel Cell Catalyst Layer Nanostructures.

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2024-07-10 DOI:10.1021/acsnano.4c04943
Zhiqiang Niu, Wanhui Zhao, Hao Deng, Lu Tian, Valerie J Pinfield, Pingwen Ming, Yun Wang
{"title":"Generative Artificial Intelligence for Designing Multi-Scale Hydrogen Fuel Cell Catalyst Layer Nanostructures.","authors":"Zhiqiang Niu, Wanhui Zhao, Hao Deng, Lu Tian, Valerie J Pinfield, Pingwen Ming, Yun Wang","doi":"10.1021/acsnano.4c04943","DOIUrl":null,"url":null,"abstract":"<p><p>Multiscale design of catalyst layers (CLs) is important to advancing hydrogen electrochemical conversion devices toward commercialized deployment, which has nevertheless been greatly hampered by the complex interplay among multiscale CL components, high synthesis cost and vast design space. We lack rational design and optimization techniques that can accurately reflect the nanostructure-performance relationship and cost-effectively search the design space. Here, we fill this gap with a deep generative artificial intelligence (AI) framework, GLIDER, that integrates recent generative AI, data-driven surrogate techniques and collective intelligence to efficiently search the optimal CL nanostructures driven by their electrochemical performance. GLIDER achieves realistic multiscale CL digital generation by leveraging the dimensionality-reduction ability of quantized vector-variational autoencoder. The powerful generative capability of GLIDER allows the efficient search of the optimal design parameters for the Pt-carbon-ionomer nanostructures of CLs. We also demonstrate that GLIDER is transferable to other fuel cell electrode microstructure generation, <i>e.g</i>., fibrous gas diffusion layers and solid oxide fuel cell anode. GLIDER is of potential as a digital tool for the design and optimization of broad electrochemical energy devices.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c04943","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Multiscale design of catalyst layers (CLs) is important to advancing hydrogen electrochemical conversion devices toward commercialized deployment, which has nevertheless been greatly hampered by the complex interplay among multiscale CL components, high synthesis cost and vast design space. We lack rational design and optimization techniques that can accurately reflect the nanostructure-performance relationship and cost-effectively search the design space. Here, we fill this gap with a deep generative artificial intelligence (AI) framework, GLIDER, that integrates recent generative AI, data-driven surrogate techniques and collective intelligence to efficiently search the optimal CL nanostructures driven by their electrochemical performance. GLIDER achieves realistic multiscale CL digital generation by leveraging the dimensionality-reduction ability of quantized vector-variational autoencoder. The powerful generative capability of GLIDER allows the efficient search of the optimal design parameters for the Pt-carbon-ionomer nanostructures of CLs. We also demonstrate that GLIDER is transferable to other fuel cell electrode microstructure generation, e.g., fibrous gas diffusion layers and solid oxide fuel cell anode. GLIDER is of potential as a digital tool for the design and optimization of broad electrochemical energy devices.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
设计多尺度氢燃料电池催化剂层纳米结构的生成人工智能。
催化剂层(CL)的多尺度设计对于推动氢能电化学转换装置的商业化应用非常重要,但由于多尺度催化剂层成分之间的复杂相互作用、高昂的合成成本和广阔的设计空间,这种设计受到了极大的阻碍。我们缺乏合理的设计和优化技术,无法准确反映纳米结构与性能之间的关系,也无法经济高效地搜索设计空间。在此,我们利用深度生成式人工智能(AI)框架 GLIDER 填补了这一空白,该框架集成了最新的生成式人工智能、数据驱动的代用技术和集体智能,可高效地搜索由电化学性能驱动的最佳 CL 纳米结构。GLIDER 利用量化矢量变异自动编码器的降维能力,实现了逼真的多尺度 CL 数字生成。GLIDER 强大的生成能力可以高效地搜索 CL 的铂碳离子纳米结构的最佳设计参数。我们还证明,GLIDER 可用于其他燃料电池电极微结构的生成,如纤维状气体扩散层和固体氧化物燃料电池阳极。GLIDER 有潜力成为设计和优化各种电化学能源设备的数字化工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
Delivery Strategy to Enhance the Therapeutic Efficacy of Liver Fibrosis via Nanoparticle Drug Delivery Systems. Engineering the Electrostatic Interactions between Oppositely Charged Polymer-Grafted Nanoparticles for Constructing Colloid Molecules on Substrates. Understanding the Sodium Storage Behavior of Closed Pores/Carbonyl Groups in Hard Carbon. Direct Excitation Transfer in Plasmonic Metal-Chalcopyrite-Hybrids: Insights from Single Particle Line Shape Analysis. Advanced Bioinspired Multifunctional Platforms Focusing on Gut Microbiota Regulation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1