Engineering the Electrostatic Interactions between Oppositely Charged Polymer-Grafted Nanoparticles for Constructing Colloid Molecules on Substrates.

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2024-08-13 Epub Date: 2024-07-31 DOI:10.1021/acsnano.4c01891
Xiaoxue Shen, Huibin He, Di Zheng, Wei Cao, Yutao Sang, Zhihong Nie
{"title":"Engineering the Electrostatic Interactions between Oppositely Charged Polymer-Grafted Nanoparticles for Constructing Colloid Molecules on Substrates.","authors":"Xiaoxue Shen, Huibin He, Di Zheng, Wei Cao, Yutao Sang, Zhihong Nie","doi":"10.1021/acsnano.4c01891","DOIUrl":null,"url":null,"abstract":"<p><p>Arrays of nanoparticle (NP) clusters with controlled architectures show broad applications in nanolasers, sensors, and photocatalysis, but the fabrication of these arrays on substrates remains a grand challenge. This review presents a highly effective polymer-based strategy for the process-directed self-assembly of binary polyelectrolyte-grafted NPs (PGNPs) bearing opposite charges into stable colloidal molecules (CMs) on substrates via electrostatic interactions. The coordination number (<i>x</i>) of AB<sub><i>x</i></sub> CMs can be tuned by adjusting the pH or ionic strength of the solution or by employing different combinations of PGNPs with varying charge densities. Large-area CMs with diverse structures ranging from AB to AB<sub>7</sub> can be constructed on substrates in high yields. This approach is applicable to PGNPs with different cores of NPs. This assembly strategy offers a useful tool for the fabrication of structurally precise assemblies on substrates with broad applications.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c01891","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Arrays of nanoparticle (NP) clusters with controlled architectures show broad applications in nanolasers, sensors, and photocatalysis, but the fabrication of these arrays on substrates remains a grand challenge. This review presents a highly effective polymer-based strategy for the process-directed self-assembly of binary polyelectrolyte-grafted NPs (PGNPs) bearing opposite charges into stable colloidal molecules (CMs) on substrates via electrostatic interactions. The coordination number (x) of ABx CMs can be tuned by adjusting the pH or ionic strength of the solution or by employing different combinations of PGNPs with varying charge densities. Large-area CMs with diverse structures ranging from AB to AB7 can be constructed on substrates in high yields. This approach is applicable to PGNPs with different cores of NPs. This assembly strategy offers a useful tool for the fabrication of structurally precise assemblies on substrates with broad applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用带相反电荷的聚合物接枝纳米粒子之间的静电相互作用,在基底上构建胶体分子。
具有可控结构的纳米粒子 (NP) 簇阵列在纳米激光器、传感器和光催化领域有着广泛的应用,但在基底上制造这些阵列仍然是一项巨大的挑战。本综述介绍了一种基于聚合物的高效策略,即通过静电相互作用,在工艺指导下将带相反电荷的二元聚电解质接枝 NPs(PGNPs)在基底上自组装成稳定的胶体分子(CMs)。通过调节溶液的 pH 值或离子强度,或采用不同电荷密度的 PGNPs 组合,可以调整 ABx CM 的配位数(x)。可在基底上高产率地构建出具有从 AB 到 AB7 等不同结构的大面积 CM。这种方法适用于具有不同 NP 核心的 PGNPs。这种组装策略为在基底上制造结构精确的组装体提供了有用的工具,具有广泛的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
Biomimetic Peptide Nanonets: Exploiting Bacterial Entrapment and Macrophage Rerousing for Combatting Infections. Colloidal Hydrogel with Staged Sequestration and Release of Molecules Undergoing Competitive Binding. Evolution of Ferroelectric Properties in SmxBi1-xFeO3 via Automated Piezoresponse Force Microscopy across combinatorial spread libraries. Discovery of Isomerization Intermediates in CdS Magic-Size Clusters. Magneto-Responsive Chiral Optical Materials: Flow-Induced Twisting of Cellulose Nanocrystals in Patterned Magnetic Fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1