Universal Strike-Plating Strategy to Suppress Hydrogen Evolution for Improving Zinc Metal Reversibility.

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2024-07-23 Epub Date: 2024-07-10 DOI:10.1021/acsnano.4c03074
Yang Yang, Ruijie Zhu, Gang Wu, Wuhai Yang, Huijun Yang, Eunjoo Yoo
{"title":"Universal Strike-Plating Strategy to Suppress Hydrogen Evolution for Improving Zinc Metal Reversibility.","authors":"Yang Yang, Ruijie Zhu, Gang Wu, Wuhai Yang, Huijun Yang, Eunjoo Yoo","doi":"10.1021/acsnano.4c03074","DOIUrl":null,"url":null,"abstract":"<p><p>The development of highly reversible zinc (Zn) metal anodes is pivotal for determining the feasibility of rechargeable aqueous Zn batteries. Our research quantitively evalulates how the hydrogen evolution reaction (HER) adversely affects Zn reversibility in batteries and emphasizes the importance of substrate design in modulating HER and its associated side reactions. When the cathodic reaction is dominated by HER, the Zn electrode exhibits low plating/stripping efficiency, characterized by extensive coverage of a passivation layer that encompasses the electrochemical inactive Zn. Therefore, we propose a strike-plating strategy that modifies the pristine substrate by initiating Zn plating at a high current density for a short time. This straightforward and effective approach has been proven to suppress hydrogen evolution and transform the electrodeposition mode into one dominated by Zn reduction. Notably, Zn metal exhibits exceptionally high average reversibility of 98.80% over 200 h on a stainless steel substrate, which was typically precluded in aqueous electrolytes because of their favorable HER capability. Additionally, our strike-plating strategy demonstrates an appliable pathway to achieve high Zn reversibility on Cu substrate, showing an average efficiency of 99.83% over 540 h at a high areal capacity of 10 mAh cm<sup>-2</sup> and high-performance Zn full cells with low N/P ratios. This research provides a foundation for future investigations into the underlying mechanisms of HER and strategies to optimize Zn-based battery performance.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c03074","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of highly reversible zinc (Zn) metal anodes is pivotal for determining the feasibility of rechargeable aqueous Zn batteries. Our research quantitively evalulates how the hydrogen evolution reaction (HER) adversely affects Zn reversibility in batteries and emphasizes the importance of substrate design in modulating HER and its associated side reactions. When the cathodic reaction is dominated by HER, the Zn electrode exhibits low plating/stripping efficiency, characterized by extensive coverage of a passivation layer that encompasses the electrochemical inactive Zn. Therefore, we propose a strike-plating strategy that modifies the pristine substrate by initiating Zn plating at a high current density for a short time. This straightforward and effective approach has been proven to suppress hydrogen evolution and transform the electrodeposition mode into one dominated by Zn reduction. Notably, Zn metal exhibits exceptionally high average reversibility of 98.80% over 200 h on a stainless steel substrate, which was typically precluded in aqueous electrolytes because of their favorable HER capability. Additionally, our strike-plating strategy demonstrates an appliable pathway to achieve high Zn reversibility on Cu substrate, showing an average efficiency of 99.83% over 540 h at a high areal capacity of 10 mAh cm-2 and high-performance Zn full cells with low N/P ratios. This research provides a foundation for future investigations into the underlying mechanisms of HER and strategies to optimize Zn-based battery performance.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
抑制氢演化以提高锌金属可逆性的通用打击镀层策略。
开发高度可逆的锌(Zn)金属阳极对于确定可充电水性锌电池的可行性至关重要。我们的研究定量评估了氢演化反应(HER)如何对电池中锌的可逆性产生不利影响,并强调了基底设计在调节 HER 及其相关副反应方面的重要性。当氢化还原反应主导阴极反应时,锌电极的电镀/剥离效率较低,其特点是钝化层的大面积覆盖,其中包括电化学不活跃的锌。因此,我们提出了一种电镀策略,即在短时间内以高电流密度启动锌电镀,从而改变原始基底。事实证明,这种简单有效的方法可以抑制氢演化,并将电沉积模式转变为以锌还原为主的模式。值得注意的是,金属锌在不锈钢基底上显示出极高的平均可逆性,200 小时内可逆性达到 98.80%。此外,我们的击镀策略展示了在铜基底上实现高锌可逆性的适用途径,在 10 mAh cm-2 的高面积容量和低 N/P 比的高性能全锌电池条件下,540 小时的平均效率达到 99.83%。这项研究为今后研究 HER 的基本机制和优化锌基电池性能的策略奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
Delivery Strategy to Enhance the Therapeutic Efficacy of Liver Fibrosis via Nanoparticle Drug Delivery Systems. Engineering the Electrostatic Interactions between Oppositely Charged Polymer-Grafted Nanoparticles for Constructing Colloid Molecules on Substrates. Understanding the Sodium Storage Behavior of Closed Pores/Carbonyl Groups in Hard Carbon. Direct Excitation Transfer in Plasmonic Metal-Chalcopyrite-Hybrids: Insights from Single Particle Line Shape Analysis. Advanced Bioinspired Multifunctional Platforms Focusing on Gut Microbiota Regulation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1