Multifunctional Wearable Electronic Based on Fabric Modified by PPy/NiCoAl-LDH for Energy Storage, Electromagnetic Interference Shielding, and Photothermal Conversion.

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Small Pub Date : 2024-07-10 DOI:10.1002/smll.202402510
Bin Lyu, Ken Chen, Jiamin Zhu, Dangge Gao
{"title":"Multifunctional Wearable Electronic Based on Fabric Modified by PPy/NiCoAl-LDH for Energy Storage, Electromagnetic Interference Shielding, and Photothermal Conversion.","authors":"Bin Lyu, Ken Chen, Jiamin Zhu, Dangge Gao","doi":"10.1002/smll.202402510","DOIUrl":null,"url":null,"abstract":"<p><p>With the rapid advancement of electronic technology, traditional textiles are challenged to keep up with the demands of wearable electronics. It is anticipated that multifunctional textile-based electronics incorporating energy storage, electromagnetic interference (EMI) shielding, and photothermal conversion are expected to alleviate this problem. Herein, a multifunctional cotton fabric with hierarchical array structure (PPy/NiCoAl-LDH/Cotton) is fabricated by the introduction of NiCoAl-layered double hydroxide (NiCoAl-LDH) nanosheet arrays on cotton fibers, followed by polymerization and growth of continuous dense polypyrrole (PPy) conductive layers. The multifunctional cotton fabric shows a high specific areal capacitance of 754.72 mF cm<sup>-2</sup> at 5 mA cm<sup>-2</sup> and maintains a long cycling life (80.95% retention after 1000 cycles). The symmetrical supercapacitor assembled with this fabric achieves an energy density of 20.83 Wh cm<sup>-2</sup> and a power density of 0.23 mWcm<sup>-2</sup>. Moreover, the excellent electromagnetic interference shielding (38.83 dB), photothermal conversion (70.2 °C at 1000 mW cm<sup>-2</sup>), flexibility and durability are also possess by the multifunctional cotton fabric. Such a multifunctional cotton fabric has great potential for using in new energy, smart electronics, and thermal management applications.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202402510","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

With the rapid advancement of electronic technology, traditional textiles are challenged to keep up with the demands of wearable electronics. It is anticipated that multifunctional textile-based electronics incorporating energy storage, electromagnetic interference (EMI) shielding, and photothermal conversion are expected to alleviate this problem. Herein, a multifunctional cotton fabric with hierarchical array structure (PPy/NiCoAl-LDH/Cotton) is fabricated by the introduction of NiCoAl-layered double hydroxide (NiCoAl-LDH) nanosheet arrays on cotton fibers, followed by polymerization and growth of continuous dense polypyrrole (PPy) conductive layers. The multifunctional cotton fabric shows a high specific areal capacitance of 754.72 mF cm-2 at 5 mA cm-2 and maintains a long cycling life (80.95% retention after 1000 cycles). The symmetrical supercapacitor assembled with this fabric achieves an energy density of 20.83 Wh cm-2 and a power density of 0.23 mWcm-2. Moreover, the excellent electromagnetic interference shielding (38.83 dB), photothermal conversion (70.2 °C at 1000 mW cm-2), flexibility and durability are also possess by the multifunctional cotton fabric. Such a multifunctional cotton fabric has great potential for using in new energy, smart electronics, and thermal management applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 PPy/NiCoAl-LDH 改性织物的多功能可穿戴电子设备,用于储能、电磁干扰屏蔽和光热转换。
随着电子技术的飞速发展,传统纺织品在满足可穿戴电子设备的需求方面面临挑战。预计集能量存储、电磁干扰(EMI)屏蔽和光热转换于一体的多功能纺织电子产品有望缓解这一问题。本文通过在棉纤维上引入镍钴铝层双氢氧化物(NiCoAl-LDH)纳米片阵列,然后聚合并生长连续致密的聚吡咯(PPy)导电层,制备出具有分层阵列结构(PPy/NiCoAl-LDH/棉)的多功能棉织物。多功能棉织物在 5 mA cm-2 的条件下显示出 754.72 mF cm-2 的高比面积电容,并保持了较长的循环寿命(1000 次循环后保持率为 80.95%)。用这种织物组装的对称超级电容器的能量密度为 20.83 Wh cm-2,功率密度为 0.23 mW cm-2。此外,这种多功能棉织物还具有出色的电磁干扰屏蔽(38.83 dB)、光热转换(1000 mW cm-2 时为 70.2 °C)、柔韧性和耐用性。这种多功能棉织物在新能源、智能电子和热管理应用方面具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
期刊最新文献
Achieving Optical Refractive Index of 10-Plus by Colloidal Self-Assembly. Advances and Prospects in Liquid Biopsy Techniques for Malignant Tumor Diagnosis and Surveillance. Delivery of Synthetic Interleukin-22 mRNA to Hepatocytes via Lipid Nanoparticles Alleviates Liver Injury. Hydrodynamics and Aggregation of Nanoparticles with Protein Corona: Effects of Protein Concentration and Ionic Strength. Incorporating Zinc Metal Sites in Aluminum-Coordinated Porphyrin Metal-Organic Frameworks for Enhanced Photocatalytic Nitrogen Reduction to Ammonia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1