Achieving Optical Refractive Index of 10-Plus by Colloidal Self-Assembly.

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Small Pub Date : 2024-07-31 DOI:10.1002/smll.202404223
NaYeoun Kim, Ji-Hyeok Huh, YongDeok Cho, Sung Hun Park, Hyeon Ho Kim, Kyung Hun Rho, Jaewon Lee, Seungwoo Lee
{"title":"Achieving Optical Refractive Index of 10-Plus by Colloidal Self-Assembly.","authors":"NaYeoun Kim, Ji-Hyeok Huh, YongDeok Cho, Sung Hun Park, Hyeon Ho Kim, Kyung Hun Rho, Jaewon Lee, Seungwoo Lee","doi":"10.1002/smll.202404223","DOIUrl":null,"url":null,"abstract":"<p><p>This study demonstrates the developments of self-assembled optical metasurfaces to overcome inherent limitations in polarization density (P) and high refractive indices (n) within naturally occurring materials. The Maxwellian macroscopic description establishes a link between P and n, revealing a static limit in natural materials, restricting n to ≈4.0 at optical frequencies. Previously, it is accepted that self-assembly enables the creation of nanogaps between metallic nanoparticles (NPs), boosting capacitive enhancement of P and resultant exceptionally high n at optical frequencies. The work focuses on assembling gold (Au) NPs into a closely packed monolayer by rationally designing the polymeric ligand to balance attractive and repulsive forces, in that polymeric brush-mediated self-assembly of the close-packed Au NP monolayer is robustly achieved over a large-area. The resulting monolayer of Au nanospheres (NSs), nanooctahedras (NOs), and nanocubes (NCs) exhibits high macroscopic integrity and crystallinity, sufficiently enough for pushing n to record-high regimes. The systematic comparisons between each differently shaped Au NP monolayers elucidate the significance of capacitive coupling in achieving an unnaturally high n. The achieved n of 10.12 at optical frequencies stands as a benchmark, highlighting the potential of polyhedral Au NPs in advancing optical metasurfaces.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202404223","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study demonstrates the developments of self-assembled optical metasurfaces to overcome inherent limitations in polarization density (P) and high refractive indices (n) within naturally occurring materials. The Maxwellian macroscopic description establishes a link between P and n, revealing a static limit in natural materials, restricting n to ≈4.0 at optical frequencies. Previously, it is accepted that self-assembly enables the creation of nanogaps between metallic nanoparticles (NPs), boosting capacitive enhancement of P and resultant exceptionally high n at optical frequencies. The work focuses on assembling gold (Au) NPs into a closely packed monolayer by rationally designing the polymeric ligand to balance attractive and repulsive forces, in that polymeric brush-mediated self-assembly of the close-packed Au NP monolayer is robustly achieved over a large-area. The resulting monolayer of Au nanospheres (NSs), nanooctahedras (NOs), and nanocubes (NCs) exhibits high macroscopic integrity and crystallinity, sufficiently enough for pushing n to record-high regimes. The systematic comparisons between each differently shaped Au NP monolayers elucidate the significance of capacitive coupling in achieving an unnaturally high n. The achieved n of 10.12 at optical frequencies stands as a benchmark, highlighting the potential of polyhedral Au NPs in advancing optical metasurfaces.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过胶体自组装实现 10 以上的光学折射率
本研究展示了自组装光学元表面的发展,以克服天然材料在偏振密度(P)和高折射率(n)方面的固有限制。麦克斯韦宏观描述建立了 P 和 n 之间的联系,揭示了天然材料中的静态限制,在光学频率下将 n 限制在≈4.0。在此之前,人们认为自组装能够在金属纳米粒子(NPs)之间产生纳米间隙,从而提高 P 的电容增强效应,并在光学频率下产生极高的 n。这项研究的重点是通过合理设计聚合物配体来平衡吸引力和排斥力,从而将金(Au)纳米粒子组装成紧密堆积的单层,在大面积范围内实现聚合物刷介导的紧密堆积金纳米粒子单层的自组装。由此产生的金纳米球(NSs)、纳米八面体(NOs)和纳米立方体(NCs)单层具有很高的宏观完整性和结晶性,足以将 n 推向创纪录的高水平。通过对每种不同形状的金氧化物单层进行系统比较,阐明了电容耦合在实现非自然高 n 方面的重要作用。在光学频率下实现的 10.12 n 是一个基准,凸显了多面体金氧化物在推动光学元表面发展方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
期刊最新文献
An Approach to Apply BDNF Targeting Fe3O4-Based Nanoparticles as Multifunctional Anti-Alzheimer Agents. Bidirectional Inhibiting Interfacial Ion Migration in the Inorganic Hole Transport Layer for Perovskite Light-Emitting Diodes. Construction of 3D Fibonacci Cauliflower-Like NiCo2S4/Expanded Graphite Heterogeneous Structures for Enhanced Electromagnetic Wave Absorption. Dual Nanofillers Reinforced Polymer-Inorganic Nanocomposite Film with Enhanced Mechanical Properties. Electrolyte Design Strategies for Aqueous Sodium-Ion Batteries: Progress and Prospects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1