Caili Luo , Anni Ren , Zixuan Jin , Jianxin Zhang , Wei Shi , Yue Zeng , Zhaojun Liu , Mengru Lu , Yajing Hou , Feng Tang , Wei Huang
{"title":"Design and synthesis of novel site-specific antibody-drug conjugates that target TROP2","authors":"Caili Luo , Anni Ren , Zixuan Jin , Jianxin Zhang , Wei Shi , Yue Zeng , Zhaojun Liu , Mengru Lu , Yajing Hou , Feng Tang , Wei Huang","doi":"10.1016/j.bmc.2024.117828","DOIUrl":null,"url":null,"abstract":"<div><p>The approval of Trodelvy® validates TROP2 as a druggable but challenging target for antibody-drug conjugates (ADCs) to treat metastatic triple-negative breast cancer (mTNBC). Here, based on the TROP2-targeted antibody sacituzumab, we designed and developed several site-specific ADC candidates, which employ MMAE (monomethyl auristatin E) as the toxin, via IgG glycoengineering or affinity-directed traceless conjugation. Systematic evaluation of these site-specific ADCs in homogeneity, hydrophilicity, stability, and antitumor efficiency was conducted. The results indicate that the site-specific ADCs <strong>gsADC 3b</strong> made from one-step glycoengineering exhibit good aggregation stability and <em>in vivo</em> efficacy, providing a new format of ADCs that target TROP2.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968089624002426","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The approval of Trodelvy® validates TROP2 as a druggable but challenging target for antibody-drug conjugates (ADCs) to treat metastatic triple-negative breast cancer (mTNBC). Here, based on the TROP2-targeted antibody sacituzumab, we designed and developed several site-specific ADC candidates, which employ MMAE (monomethyl auristatin E) as the toxin, via IgG glycoengineering or affinity-directed traceless conjugation. Systematic evaluation of these site-specific ADCs in homogeneity, hydrophilicity, stability, and antitumor efficiency was conducted. The results indicate that the site-specific ADCs gsADC 3b made from one-step glycoengineering exhibit good aggregation stability and in vivo efficacy, providing a new format of ADCs that target TROP2.