Insights into crucial molecules and protein channels involved in pig sperm cryopreservation

IF 2.2 2区 农林科学 Q1 AGRICULTURE, DAIRY & ANIMAL SCIENCE Animal Reproduction Science Pub Date : 2024-10-01 DOI:10.1016/j.anireprosci.2024.107547
{"title":"Insights into crucial molecules and protein channels involved in pig sperm cryopreservation","authors":"","doi":"10.1016/j.anireprosci.2024.107547","DOIUrl":null,"url":null,"abstract":"<div><div>Cryopreservation is the most efficient procedure for long-term preservation of mammalian sperm; however, its use is not currently dominant for boar sperm before its use for artificial insemination. In fact, freezing and thawing have an extensive detrimental effect on sperm function and lead to impaired fertility. The present work summarises the basis of the structural and functional impact of cryopreservation on pig sperm that have been extensively studied in recent decades, as well as the molecular alterations in sperm that are related to this damage. The wide variety of mechanisms underlying the consequences of alterations in expression levels and structural modifications of sperm proteins with diverse functions is detailed. Moreover, the use of cryotolerance biomarkers as predictors of the potential resilience of a sperm sample to the cryopreservation process is also discussed. Regarding the proteins that have been identified to be relevant during the cryopreservation process, they are classified according to the functions they carry out in sperm, including antioxidant function, plasma membrane protection, sperm motility regulation, chromatin structure, metabolism and mitochondrial function, heat-shock response, premature capacitation and sperm-oocyte binding and fusion. Special reference is made to the relevance of sperm membrane channels, as their function is crucial for boar sperm to withstand osmotic shock during cryopreservation. Finally, potential aims for future research on cryodamage and cryotolerance are proposed, which might be crucial to minimise the side-effects of cryopreservation and to make it a more advantageous strategy for boar sperm preservation.</div></div>","PeriodicalId":7880,"journal":{"name":"Animal Reproduction Science","volume":"269 ","pages":"Article 107547"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Reproduction Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378432024001386","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Cryopreservation is the most efficient procedure for long-term preservation of mammalian sperm; however, its use is not currently dominant for boar sperm before its use for artificial insemination. In fact, freezing and thawing have an extensive detrimental effect on sperm function and lead to impaired fertility. The present work summarises the basis of the structural and functional impact of cryopreservation on pig sperm that have been extensively studied in recent decades, as well as the molecular alterations in sperm that are related to this damage. The wide variety of mechanisms underlying the consequences of alterations in expression levels and structural modifications of sperm proteins with diverse functions is detailed. Moreover, the use of cryotolerance biomarkers as predictors of the potential resilience of a sperm sample to the cryopreservation process is also discussed. Regarding the proteins that have been identified to be relevant during the cryopreservation process, they are classified according to the functions they carry out in sperm, including antioxidant function, plasma membrane protection, sperm motility regulation, chromatin structure, metabolism and mitochondrial function, heat-shock response, premature capacitation and sperm-oocyte binding and fusion. Special reference is made to the relevance of sperm membrane channels, as their function is crucial for boar sperm to withstand osmotic shock during cryopreservation. Finally, potential aims for future research on cryodamage and cryotolerance are proposed, which might be crucial to minimise the side-effects of cryopreservation and to make it a more advantageous strategy for boar sperm preservation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
洞察猪精子冷冻保存过程中的关键分子和蛋白通道。
冷冻保存是长期保存哺乳动物精子的最有效方法,但目前在公猪精子用于人工授精之前,冷冻保存并不占主导地位。事实上,冷冻和解冻会对精子功能产生广泛的不利影响,并导致生育能力受损。本研究总结了近几十年来广泛研究的冷冻保存对猪精子结构和功能影响的基础,以及与这种损害有关的精子分子变化。该研究详细阐述了精子蛋白表达水平和结构改变对不同功能的影响的多种机制。此外,还讨论了如何使用低温耐受性生物标志物来预测精子样本对低温保存过程的潜在适应能力。关于已确定在冷冻保存过程中具有相关性的蛋白质,将根据其在精子中的功能进行分类,包括抗氧化功能、质膜保护、精子运动调节、染色质结构、新陈代谢和线粒体功能、热休克反应、过早获能以及精子与卵细胞结合和融合。特别提到了精子膜通道的相关性,因为它们的功能对于公猪精子在冷冻保存过程中承受渗透冲击至关重要。最后,提出了未来冷冻损伤和冷冻耐受性研究的潜在目标,这可能对最大限度地减少冷冻保存的副作用并使其成为保存公猪精子的更有利策略至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Animal Reproduction Science
Animal Reproduction Science 农林科学-奶制品与动物科学
CiteScore
4.50
自引率
9.10%
发文量
136
审稿时长
54 days
期刊介绍: Animal Reproduction Science publishes results from studies relating to reproduction and fertility in animals. This includes both fundamental research and applied studies, including management practices that increase our understanding of the biology and manipulation of reproduction. Manuscripts should go into depth in the mechanisms involved in the research reported, rather than a give a mere description of findings. The focus is on animals that are useful to humans including food- and fibre-producing; companion/recreational; captive; and endangered species including zoo animals, but excluding laboratory animals unless the results of the study provide new information that impacts the basic understanding of the biology or manipulation of reproduction. The journal''s scope includes the study of reproductive physiology and endocrinology, reproductive cycles, natural and artificial control of reproduction, preservation and use of gametes and embryos, pregnancy and parturition, infertility and sterility, diagnostic and therapeutic techniques. The Editorial Board of Animal Reproduction Science has decided not to publish papers in which there is an exclusive examination of the in vitro development of oocytes and embryos; however, there will be consideration of papers that include in vitro studies where the source of the oocytes and/or development of the embryos beyond the blastocyst stage is part of the experimental design.
期刊最新文献
Boar semen microbiome: Insights and potential implications. Editorial Board Multiple mating enhances luteogenesis increasing corpus luteum perfusion area and progesterone production in ewes. Harnessing the value of fertility biomarkers in bull sperm for buck sperm. Characterizing pregnancy losses in lactating Holstein cows receiving a fixed-timed artificial insemination protocol
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1