Dongao Liu, Yuqing Wang, Quanxin Gong, Yupeng Xia, Lei Li, Yuhua Xue, Junhe Yang, Shengjuan Li
{"title":"Modification Strategies of Hexagonal Boron Nitride Nanomaterials for Photocatalysis","authors":"Dongao Liu, Yuqing Wang, Quanxin Gong, Yupeng Xia, Lei Li, Yuhua Xue, Junhe Yang, Shengjuan Li","doi":"10.1002/tcr.202300334","DOIUrl":null,"url":null,"abstract":"<p>Although hexagonal boron nitride (h-BN) was initially considered a less promising photocatalyst due to its large band gap and apparent chemical inertness, its unique two-dimensional lamellar structure coupled with high stability and environmental friendliness, as the second largest van der Waals material after graphene, provides a unique platform for photocatalytic innovation. This review not only highlights the intrinsic qualities of h-BN with photocatalytic potentials, such as high stability, environmental compatibility, and tunable bandgap through various modification strategies but also provides a comprehensive overview of the recent advances in h-BN-based nanomaterials for environmental and energy applications, as well as an in-depth description of the modification methods and fundamental properties for these applications. In addition, we discuss the challenges and prospects of h-BN-based nanomaterials for future photocatalysis.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":"24 7","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical record","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/tcr.202300334","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Although hexagonal boron nitride (h-BN) was initially considered a less promising photocatalyst due to its large band gap and apparent chemical inertness, its unique two-dimensional lamellar structure coupled with high stability and environmental friendliness, as the second largest van der Waals material after graphene, provides a unique platform for photocatalytic innovation. This review not only highlights the intrinsic qualities of h-BN with photocatalytic potentials, such as high stability, environmental compatibility, and tunable bandgap through various modification strategies but also provides a comprehensive overview of the recent advances in h-BN-based nanomaterials for environmental and energy applications, as well as an in-depth description of the modification methods and fundamental properties for these applications. In addition, we discuss the challenges and prospects of h-BN-based nanomaterials for future photocatalysis.
期刊介绍:
The Chemical Record (TCR) is a "highlights" journal publishing timely and critical overviews of new developments at the cutting edge of chemistry of interest to a wide audience of chemists (2013 journal impact factor: 5.577). The scope of published reviews includes all areas related to physical chemistry, analytical chemistry, inorganic chemistry, organic chemistry, polymer chemistry, materials chemistry, bioorganic chemistry, biochemistry, biotechnology and medicinal chemistry as well as interdisciplinary fields.
TCR provides carefully selected highlight papers by leading researchers that introduce the author''s own experimental and theoretical results in a framework designed to establish perspectives with earlier and contemporary work and provide a critical review of the present state of the subject. The articles are intended to present concise evaluations of current trends in chemistry research to help chemists gain useful insights into fields outside their specialization and provide experts with summaries of recent key developments.