{"title":"Artificial intelligence in diabetic retinopathy screening: from idea to a medical device in clinical practice.","authors":"Jozefína Vaľková, Matěj Adam, Jan Hlaváček","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>With the growing significance of artificial intelligence in healthcare, new perspectives are emerging in primary care. Diabetic retinopathy, a microvascular complication of diabetes mellitus, often remains unnoticed until patient is facing complications. Artificial intelligence presents a promising solution that can enhance the accessibility of diabetic retinopathy screening for a broader range of patients. The key challenge lies in successfully integrating the solution into clinical practice, a demanding process with multiple phases to ensure the resulting medical device is effective and safe for patient use. Aireen software uses artificial intelligence to perform diabetic retinopathy screening on retinal images captured by optical fundus cameras. The medical device complies with European Medical Device Regulation 2017/745 and was introduced to the market in 2023. Collaboration between physicians and the development team played a crucial role throughout the entire lifecycle of the medical device. Physicians were engaged in defining the intended use of the medical device, risk analysis, data annotation for training and software validation, as well as throughout a clinical trial. A clinical trial was conducted on 1,274 patients with type 1 and type 2 diabetes mellitus, where Aireen medical device achieved a sensitivity of 94.0% and a specificity of 90.7% compared to the reference evaluation. This clinical trial confirmed the potential of Aireen to enhance the availability of diabetic retinopathy screening and early disease detection.</p>","PeriodicalId":9645,"journal":{"name":"Casopis lekaru ceskych","volume":"162 7-8","pages":"290-293"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Casopis lekaru ceskych","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
With the growing significance of artificial intelligence in healthcare, new perspectives are emerging in primary care. Diabetic retinopathy, a microvascular complication of diabetes mellitus, often remains unnoticed until patient is facing complications. Artificial intelligence presents a promising solution that can enhance the accessibility of diabetic retinopathy screening for a broader range of patients. The key challenge lies in successfully integrating the solution into clinical practice, a demanding process with multiple phases to ensure the resulting medical device is effective and safe for patient use. Aireen software uses artificial intelligence to perform diabetic retinopathy screening on retinal images captured by optical fundus cameras. The medical device complies with European Medical Device Regulation 2017/745 and was introduced to the market in 2023. Collaboration between physicians and the development team played a crucial role throughout the entire lifecycle of the medical device. Physicians were engaged in defining the intended use of the medical device, risk analysis, data annotation for training and software validation, as well as throughout a clinical trial. A clinical trial was conducted on 1,274 patients with type 1 and type 2 diabetes mellitus, where Aireen medical device achieved a sensitivity of 94.0% and a specificity of 90.7% compared to the reference evaluation. This clinical trial confirmed the potential of Aireen to enhance the availability of diabetic retinopathy screening and early disease detection.