Parmida Ghiasi Tabari, Amirmohammad Sattari, Mohsen Mashhadi Keshtiban, Nushin Karkuki Osguei, John G. Hardy, Ali Samadikuchaksaraei
{"title":"Injectable hydrogel scaffold incorporating microspheres containing cobalt-doped bioactive glass for bone healing","authors":"Parmida Ghiasi Tabari, Amirmohammad Sattari, Mohsen Mashhadi Keshtiban, Nushin Karkuki Osguei, John G. Hardy, Ali Samadikuchaksaraei","doi":"10.1002/jbm.a.37773","DOIUrl":null,"url":null,"abstract":"<p>Injectable in situ-forming scaffolds that induce both angiogenesis and osteogenesis have been proven to be promising for bone healing applications. Here, we report the synthesis of an injectable hydrogel containing cobalt-doped bioactive glass (BG)-loaded microspheres. Silk fibroin (SF)/gelatin microspheres containing BG particles were fabricated through microfluidics. The microspheres were mixed in an injectable alginate solution, which formed an in situ hydrogel by adding CaCl<sub>2</sub>. The hydrogel was evaluated for its physicochemical properties, in vitro interactions with osteoblast-like and endothelial cells, and bone healing potential in a rat model of calvarial defect. The microspheres were well-dispersed in the hydrogel and formed pores of >100 μm. The hydrogel displayed shear-thinning behavior and modulated the cobalt release so that the optimal cobalt concentration for angiogenic stimulation, cell proliferation, and deposition of mineralized matrix was only achieved by the scaffold that contained BG doped with 5% wt/wt cobalt (A-S-G5Co). In the scaffold containing higher cobalt content, a reduced biomimetic mineralization on the surface was observed. The gene expression study indicated an upregulation of the osteogenic genes of <i>COL1A1</i>, <i>ALPL</i>, <i>OCN</i>, and <i>RUNX2</i> and angiogenic genes of <i>HIF1A</i> and <i>VEGF</i> at different time points in the cells cultured with the A-S-G5Co. Finally, the in vivo study demonstrated that A-S-G5Co significantly promoted both angiogenesis and osteogenesis and improved bone healing after 12 weeks of follow-up. These results show that incorporation of SF/gelatin microspheres containing cobalt-doped BG in an injectable in situ-forming scaffold can effectively enhance its bone healing potential through promotion of angiogenesis and osteogenesis.</p>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"112 12","pages":"2225-2242"},"PeriodicalIF":3.9000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part A","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37773","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Injectable in situ-forming scaffolds that induce both angiogenesis and osteogenesis have been proven to be promising for bone healing applications. Here, we report the synthesis of an injectable hydrogel containing cobalt-doped bioactive glass (BG)-loaded microspheres. Silk fibroin (SF)/gelatin microspheres containing BG particles were fabricated through microfluidics. The microspheres were mixed in an injectable alginate solution, which formed an in situ hydrogel by adding CaCl2. The hydrogel was evaluated for its physicochemical properties, in vitro interactions with osteoblast-like and endothelial cells, and bone healing potential in a rat model of calvarial defect. The microspheres were well-dispersed in the hydrogel and formed pores of >100 μm. The hydrogel displayed shear-thinning behavior and modulated the cobalt release so that the optimal cobalt concentration for angiogenic stimulation, cell proliferation, and deposition of mineralized matrix was only achieved by the scaffold that contained BG doped with 5% wt/wt cobalt (A-S-G5Co). In the scaffold containing higher cobalt content, a reduced biomimetic mineralization on the surface was observed. The gene expression study indicated an upregulation of the osteogenic genes of COL1A1, ALPL, OCN, and RUNX2 and angiogenic genes of HIF1A and VEGF at different time points in the cells cultured with the A-S-G5Co. Finally, the in vivo study demonstrated that A-S-G5Co significantly promoted both angiogenesis and osteogenesis and improved bone healing after 12 weeks of follow-up. These results show that incorporation of SF/gelatin microspheres containing cobalt-doped BG in an injectable in situ-forming scaffold can effectively enhance its bone healing potential through promotion of angiogenesis and osteogenesis.
期刊介绍:
The Journal of Biomedical Materials Research Part A is an international, interdisciplinary, English-language publication of original contributions concerning studies of the preparation, performance, and evaluation of biomaterials; the chemical, physical, toxicological, and mechanical behavior of materials in physiological environments; and the response of blood and tissues to biomaterials. The Journal publishes peer-reviewed articles on all relevant biomaterial topics including the science and technology of alloys,polymers, ceramics, and reprocessed animal and human tissues in surgery,dentistry, artificial organs, and other medical devices. The Journal also publishes articles in interdisciplinary areas such as tissue engineering and controlled release technology where biomaterials play a significant role in the performance of the medical device.
The Journal of Biomedical Materials Research is the official journal of the Society for Biomaterials (USA), the Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials.
Articles are welcomed from all scientists. Membership in the Society for Biomaterials is not a prerequisite for submission.