Pirfenidone Delivery by Blow-Molded PCL Nanofiber Mat to Reduce Collagen Synthesis by Fibroblasts

IF 3.9 3区 医学 Q2 ENGINEERING, BIOMEDICAL Journal of biomedical materials research. Part A Pub Date : 2025-03-03 DOI:10.1002/jbm.a.37884
Maximilian Zernic, Maryo Kohen, Faruk H. Orge, Amel Ahmed, Ozan Akkus
{"title":"Pirfenidone Delivery by Blow-Molded PCL Nanofiber Mat to Reduce Collagen Synthesis by Fibroblasts","authors":"Maximilian Zernic,&nbsp;Maryo Kohen,&nbsp;Faruk H. Orge,&nbsp;Amel Ahmed,&nbsp;Ozan Akkus","doi":"10.1002/jbm.a.37884","DOIUrl":null,"url":null,"abstract":"<p>Elevated intraocular pressure (IOP) during glaucoma is sometimes mitigated by insertion of glaucoma drainage devices (GDD). Excessive fibrosis around GDD plates may confine drainage and requiring revision surgeries in some patients. Pirfenidone (PFD) is an FDA approved drug to treat lung fibrosis, and it may be effective in limiting capsule formation around the GDD. To enable this, we aimed to develop a polymeric GDD encasement sheath that can sustainably release PFD to reduce fibrous capsule formation. The PFD-doped sheath was manufactured by blow molding of (poly)caprolactone (PCL). We investigated the effects of PCL concentration, spray distance, and molecular weight on the morphology of nanofibers as well as the release rate of PFD. The effects of PFD delivery on viability, number of living cells and collagen production by L-929 fibroblasts were measured in vitro. It was found that concentrations of 6%, 8%, and 10% PCL resulted in average fiber diameters of 277 ± 134, 436 ± 176, and 689 ± 297 nm, respectively. With increasing fiber diameter, the blow-spun nanofiber matrix displayed reduced burst release of PFD; ~75%, ~60%, and 45% respectively. Lower molecular weight PCL (25 kDa) demonstrated a slower release than higher molecular weight PCL (80 kDa). PCL loaded with PFD reduced collagen synthesis by L929 fibroblasts in vitro. The materials were also placed in a preliminary capacity as a proof of concept in the extraorbital space in rabbits and scored histologically to infer the severity of the inflammatory reaction. Assessment of in vivo response to blow-spun nanofibrous forms of PCL indicated a notably high inflammatory reaction to PCL. Therefore, while PFD can be integrated in PCL during blow-spinning and demonstrates antifibrotic effect in vitro, in vivo response to nanofibrous PCL by and itself suggests that this material platform does not appear to be suitable for drug delivery in the extraocular milieu.</p>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 3","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.a.37884","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part A","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37884","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Elevated intraocular pressure (IOP) during glaucoma is sometimes mitigated by insertion of glaucoma drainage devices (GDD). Excessive fibrosis around GDD plates may confine drainage and requiring revision surgeries in some patients. Pirfenidone (PFD) is an FDA approved drug to treat lung fibrosis, and it may be effective in limiting capsule formation around the GDD. To enable this, we aimed to develop a polymeric GDD encasement sheath that can sustainably release PFD to reduce fibrous capsule formation. The PFD-doped sheath was manufactured by blow molding of (poly)caprolactone (PCL). We investigated the effects of PCL concentration, spray distance, and molecular weight on the morphology of nanofibers as well as the release rate of PFD. The effects of PFD delivery on viability, number of living cells and collagen production by L-929 fibroblasts were measured in vitro. It was found that concentrations of 6%, 8%, and 10% PCL resulted in average fiber diameters of 277 ± 134, 436 ± 176, and 689 ± 297 nm, respectively. With increasing fiber diameter, the blow-spun nanofiber matrix displayed reduced burst release of PFD; ~75%, ~60%, and 45% respectively. Lower molecular weight PCL (25 kDa) demonstrated a slower release than higher molecular weight PCL (80 kDa). PCL loaded with PFD reduced collagen synthesis by L929 fibroblasts in vitro. The materials were also placed in a preliminary capacity as a proof of concept in the extraorbital space in rabbits and scored histologically to infer the severity of the inflammatory reaction. Assessment of in vivo response to blow-spun nanofibrous forms of PCL indicated a notably high inflammatory reaction to PCL. Therefore, while PFD can be integrated in PCL during blow-spinning and demonstrates antifibrotic effect in vitro, in vivo response to nanofibrous PCL by and itself suggests that this material platform does not appear to be suitable for drug delivery in the extraocular milieu.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of biomedical materials research. Part A
Journal of biomedical materials research. Part A 工程技术-材料科学:生物材料
CiteScore
10.40
自引率
2.00%
发文量
135
审稿时长
3.6 months
期刊介绍: The Journal of Biomedical Materials Research Part A is an international, interdisciplinary, English-language publication of original contributions concerning studies of the preparation, performance, and evaluation of biomaterials; the chemical, physical, toxicological, and mechanical behavior of materials in physiological environments; and the response of blood and tissues to biomaterials. The Journal publishes peer-reviewed articles on all relevant biomaterial topics including the science and technology of alloys,polymers, ceramics, and reprocessed animal and human tissues in surgery,dentistry, artificial organs, and other medical devices. The Journal also publishes articles in interdisciplinary areas such as tissue engineering and controlled release technology where biomaterials play a significant role in the performance of the medical device. The Journal of Biomedical Materials Research is the official journal of the Society for Biomaterials (USA), the Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Articles are welcomed from all scientists. Membership in the Society for Biomaterials is not a prerequisite for submission.
期刊最新文献
Measurement and Comparison of Hyaluronic Acid Hydrogel Mechanics Across Length Scales Optimizing Tissue-Engineered Periosteum Biochemical Cues to Hasten Bone Allograft Healing Layer-By-Layer Functionalized Gauze With Designed α-Sheet Peptides Inhibits E. coli and S. aureus Biofilm Formation 3D Bioprinting Inner Ear Organ of Corti Organoids Induce Hair Cell Regeneration Pirfenidone Delivery by Blow-Molded PCL Nanofiber Mat to Reduce Collagen Synthesis by Fibroblasts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1