{"title":"Mechanical Properties of LL6 Chondrites Under Pressures Relevant to Rocky Interiors of Icy Moons","authors":"Cassandra Seltzer, Hoagy O'Ghaffari, Matěj Peč","doi":"10.1029/2024JE008296","DOIUrl":null,"url":null,"abstract":"<p>Icy moons in the outer Solar System likely contain rocky, chondritic interiors, but this material is rarely studied under confining pressure. The contribution of rocky interiors to deformation and heat generation is therefore poorly constrained. We deformed LL6 chondrites at confining pressures ≤100 MPa and quasistatic strain rates. We defined a failure envelope, recorded acoustic emissions (AEs), measured ultrasonic velocities, and retrieved static and dynamic elastic moduli for the experimental conditions. The Young's modulus, which quantifies stiffness, of the chondritic material increased with increasing confining pressure. The material reached its peak strength, which is the maximum supported differential stress (<i>σ</i><sub>1</sub> − <i>σ</i><sub>3</sub>), between 40 and 50 MPa confining pressure. Above this 40–50 MPa range of confining pressure, the stiffness increased significantly, while the peak strength dropped. Acoustic emission events associated with brittle deformation mechanisms occurred both during isotropic pressurization (<i>σ</i><sub>1</sub> = <i>σ</i><sub>2</sub> = <i>σ</i><sub>3</sub>) as well as at low differential stresses during triaxial deformation (<i>σ</i><sub>1</sub> > <i>σ</i><sub>2</sub> = <i>σ</i><sub>3</sub>), during nominally “elastic” deformation, indicating that dissipative processes are likely possible in the rocky interiors of icy moons. These events also occurred less frequently at higher confining pressures. We therefore suggest that the chondritic interiors of icy moons could become less compliant, and possibly less dissipative, as a function of the moons' pressure and size.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"129 7","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JE008296","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JE008296","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Icy moons in the outer Solar System likely contain rocky, chondritic interiors, but this material is rarely studied under confining pressure. The contribution of rocky interiors to deformation and heat generation is therefore poorly constrained. We deformed LL6 chondrites at confining pressures ≤100 MPa and quasistatic strain rates. We defined a failure envelope, recorded acoustic emissions (AEs), measured ultrasonic velocities, and retrieved static and dynamic elastic moduli for the experimental conditions. The Young's modulus, which quantifies stiffness, of the chondritic material increased with increasing confining pressure. The material reached its peak strength, which is the maximum supported differential stress (σ1 − σ3), between 40 and 50 MPa confining pressure. Above this 40–50 MPa range of confining pressure, the stiffness increased significantly, while the peak strength dropped. Acoustic emission events associated with brittle deformation mechanisms occurred both during isotropic pressurization (σ1 = σ2 = σ3) as well as at low differential stresses during triaxial deformation (σ1 > σ2 = σ3), during nominally “elastic” deformation, indicating that dissipative processes are likely possible in the rocky interiors of icy moons. These events also occurred less frequently at higher confining pressures. We therefore suggest that the chondritic interiors of icy moons could become less compliant, and possibly less dissipative, as a function of the moons' pressure and size.
期刊介绍:
The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.