Characterization of the thermal properties of OFHC copper at cryogenic temperature

J J Valois, G F Nellis, J M Pfotenhauer
{"title":"Characterization of the thermal properties of OFHC copper at cryogenic temperature","authors":"J J Valois, G F Nellis, J M Pfotenhauer","doi":"10.1088/1757-899x/1301/1/012167","DOIUrl":null,"url":null,"abstract":"Advancements in electronics technology that operate at cryogenic temperature require the study of thermal properties of the materials and interfaces used to connect these systems to a source of cooling. A test facility has been developed to investigate thermal properties important to these applications, bulk conductivity and contact resistance, over the temperature range from 4 K to 40 K. Bulk conductivity tests were conducted on OFHC copper sourced from three different commercial vendors to determine the degree of variation between the commercial sources and the level of agreement with the values found in literature. Preliminary analysis found RRR values within the range of 50 to 75 for all sources examined. These results are in line with previous studies and confirm the consistency of copper conductivity regardless of the source. The contact resistance tests focus on measuring the variation of contact resistance with applied force over the range from 90 N to 161 N for gold-plated OFHC copper samples with surface roughness in the range of 1 to 2 micrometer. Results from these tests will provide insight into the significance of force on contact resistance. The results from both tests will help guide the design of heat paths in future cryogenic electronic technology.","PeriodicalId":14483,"journal":{"name":"IOP Conference Series: Materials Science and Engineering","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IOP Conference Series: Materials Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1757-899x/1301/1/012167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Advancements in electronics technology that operate at cryogenic temperature require the study of thermal properties of the materials and interfaces used to connect these systems to a source of cooling. A test facility has been developed to investigate thermal properties important to these applications, bulk conductivity and contact resistance, over the temperature range from 4 K to 40 K. Bulk conductivity tests were conducted on OFHC copper sourced from three different commercial vendors to determine the degree of variation between the commercial sources and the level of agreement with the values found in literature. Preliminary analysis found RRR values within the range of 50 to 75 for all sources examined. These results are in line with previous studies and confirm the consistency of copper conductivity regardless of the source. The contact resistance tests focus on measuring the variation of contact resistance with applied force over the range from 90 N to 161 N for gold-plated OFHC copper samples with surface roughness in the range of 1 to 2 micrometer. Results from these tests will provide insight into the significance of force on contact resistance. The results from both tests will help guide the design of heat paths in future cryogenic electronic technology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
OFHC 铜在低温下的热特性表征
在低温条件下运行的电子技术的发展需要对用于连接这些系统和冷却源的材料和界面的热特性进行研究。对来自三个不同商业供应商的 OFHC 铜进行了散装电导率测试,以确定商业来源之间的差异程度以及与文献中发现的值的一致程度。初步分析发现,所有检测来源的 RRR 值都在 50 到 75 之间。这些结果与之前的研究结果一致,并证实了铜导电率的一致性,无论其来源如何。接触电阻测试的重点是测量表面粗糙度在 1 到 2 微米范围内的 OFHC 镀金铜样品在 90 牛顿到 161 牛顿的施力范围内接触电阻的变化。这些测试结果将有助于深入了解力对接触电阻的影响。这两项测试的结果将有助于指导未来低温电子技术的热路径设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fluid-structure interaction modeling of dry wire drawing by coupling OpenFOAM models of lubricant film and metal wire 1D and 2D porous media fixed bed reactor simulations with DUO: Steam Methane Reforming (SMR) validation test Evaluation of a carbon dioxide fish barrier with OpenFOAM Open source tools for OpenFOAM - Adaptive mesh refinement and convergence detection Vertical axis turbine simulations based on sliding and overset meshes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1