{"title":"Weibel Instability in the Presence of an External Magnetic Field: Analytical Results","authors":"N. A. Emelyanov, Vl. V. Kocharovsky","doi":"10.1007/s11141-024-10326-7","DOIUrl":null,"url":null,"abstract":"<p>We perform dispersion analysis of the Weibel-type electron instability in collisionless bi-Maxwellian plasma with an external magnetic field aligned with the anisotropy axis, which corresponds to the highest temperature. The range of the wave numbers of unstable modes, their growth rates, maximum growth rates, and the corresponding optimal wave number as a function of the density and anisotropy of the plasma and the external magnetic field are found for ordinary mode perturbations with the wave vector and the vector of the electric field being perpendicular and parallel to the external field, respectively. The external magnetic field, which suppresses the instability of these modes, and the r.m.s. generated magnetic field, which saturates it at the nonlinear stage, are also estimated.\n</p>","PeriodicalId":748,"journal":{"name":"Radiophysics and Quantum Electronics","volume":"66 9","pages":"664 - 678"},"PeriodicalIF":0.8000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiophysics and Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11141-024-10326-7","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
We perform dispersion analysis of the Weibel-type electron instability in collisionless bi-Maxwellian plasma with an external magnetic field aligned with the anisotropy axis, which corresponds to the highest temperature. The range of the wave numbers of unstable modes, their growth rates, maximum growth rates, and the corresponding optimal wave number as a function of the density and anisotropy of the plasma and the external magnetic field are found for ordinary mode perturbations with the wave vector and the vector of the electric field being perpendicular and parallel to the external field, respectively. The external magnetic field, which suppresses the instability of these modes, and the r.m.s. generated magnetic field, which saturates it at the nonlinear stage, are also estimated.
期刊介绍:
Radiophysics and Quantum Electronics contains the most recent and best Russian research on topics such as:
Radio astronomy;
Plasma astrophysics;
Ionospheric, atmospheric and oceanic physics;
Radiowave propagation;
Quantum radiophysics;
Pphysics of oscillations and waves;
Physics of plasmas;
Statistical radiophysics;
Electrodynamics;
Vacuum and plasma electronics;
Acoustics;
Solid-state electronics.
Radiophysics and Quantum Electronics is a translation of the Russian journal Izvestiya VUZ. Radiofizika, published by the Radiophysical Research Institute and N.I. Lobachevsky State University at Nizhnii Novgorod, Russia. The Russian volume-year is published in English beginning in April.
All articles are peer-reviewed.