Refik Mansuroglu, Arsalan Adil, Michael J. Hartmann, Zoë Holmes, Andrew T. Sornborger
{"title":"Quantum Tensor-Product Decomposition from Choi-State Tomography","authors":"Refik Mansuroglu, Arsalan Adil, Michael J. Hartmann, Zoë Holmes, Andrew T. Sornborger","doi":"10.1103/prxquantum.5.030306","DOIUrl":null,"url":null,"abstract":"The Schmidt decomposition is the go-to tool for measuring bipartite entanglement of pure quantum states. Similarly, it is possible to study the entangling features of a quantum operation using its operator-Schmidt or tensor-product decomposition. While quantum technological implementations of the former are thoroughly studied, entangling properties on the operator level are harder to extract in the quantum computational framework because of the exponential nature of sample complexity. Here, we present an algorithm for unbalanced partitions into a small subsystem and a large one (the environment) to compute the tensor-product decomposition of a unitary the effect of which on the small subsystem is captured in classical memory, while the effect on the environment is accessible as a quantum resource. This quantum algorithm may be used to make predictions about operator nonlocality and effective open quantum dynamics on a subsystem, as well as for finding low-rank approximations and low-depth compilations of quantum circuit unitaries. We demonstrate the method and its applications on a time-evolution unitary of an isotropic Heisenberg model in two dimensions.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX Quantum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/prxquantum.5.030306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The Schmidt decomposition is the go-to tool for measuring bipartite entanglement of pure quantum states. Similarly, it is possible to study the entangling features of a quantum operation using its operator-Schmidt or tensor-product decomposition. While quantum technological implementations of the former are thoroughly studied, entangling properties on the operator level are harder to extract in the quantum computational framework because of the exponential nature of sample complexity. Here, we present an algorithm for unbalanced partitions into a small subsystem and a large one (the environment) to compute the tensor-product decomposition of a unitary the effect of which on the small subsystem is captured in classical memory, while the effect on the environment is accessible as a quantum resource. This quantum algorithm may be used to make predictions about operator nonlocality and effective open quantum dynamics on a subsystem, as well as for finding low-rank approximations and low-depth compilations of quantum circuit unitaries. We demonstrate the method and its applications on a time-evolution unitary of an isotropic Heisenberg model in two dimensions.