Robust variable selection for additive coefficient models

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY Computational Statistics Pub Date : 2024-07-05 DOI:10.1007/s00180-024-01524-y
Hang Zou, Xiaowen Huang, Yunlu Jiang
{"title":"Robust variable selection for additive coefficient models","authors":"Hang Zou, Xiaowen Huang, Yunlu Jiang","doi":"10.1007/s00180-024-01524-y","DOIUrl":null,"url":null,"abstract":"<p>Additive coefficient models generalize linear regression models by assuming that the relationship between the response and some covariates is linear, while their regression coefficients are additive functions. Because of its advantages in dealing with the “curse of dimensionality”, additive coefficient models gain a lot of attention. The commonly used estimation methods for additive coefficient models are not robust against high leverage points. To circumvent this difficulty, we develop a robust variable selection procedure based on the exponential squared loss function and group penalty for the additive coefficient models, which can tackle outliers in the response and covariates simultaneously. Under some regularity conditions, we show that the oracle estimator is a local solution of the proposed method. Furthermore, we apply the local linear approximation and minorization-maximization algorithm for the implementation of the proposed estimator. Meanwhile, we propose a data-driven procedure to select the tuning parameters. Simulation studies and an application to a plasma beta-carotene level data set illustrate that the proposed method can offer more reliable results than other existing methods in contamination schemes.</p>","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00180-024-01524-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Additive coefficient models generalize linear regression models by assuming that the relationship between the response and some covariates is linear, while their regression coefficients are additive functions. Because of its advantages in dealing with the “curse of dimensionality”, additive coefficient models gain a lot of attention. The commonly used estimation methods for additive coefficient models are not robust against high leverage points. To circumvent this difficulty, we develop a robust variable selection procedure based on the exponential squared loss function and group penalty for the additive coefficient models, which can tackle outliers in the response and covariates simultaneously. Under some regularity conditions, we show that the oracle estimator is a local solution of the proposed method. Furthermore, we apply the local linear approximation and minorization-maximization algorithm for the implementation of the proposed estimator. Meanwhile, we propose a data-driven procedure to select the tuning parameters. Simulation studies and an application to a plasma beta-carotene level data set illustrate that the proposed method can offer more reliable results than other existing methods in contamination schemes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
加法系数模型的稳健变量选择
加法系数模型是对线性回归模型的概括,它假设响应与某些协变量之间是线性关系,而其回归系数是加法函数。由于其在处理 "维度诅咒 "方面的优势,加系数模型受到了广泛关注。常用的加法系数模型估计方法对高杠杆点并不稳健。为了规避这一难题,我们开发了一种基于指数平方损失函数和组惩罚的加法系数模型稳健变量选择程序,可以同时处理响应和协变量中的异常值。在一些正则性条件下,我们证明了oracle估计器是所提方法的局部解。此外,我们还应用了局部线性近似和最小化-最大化算法来实现所提出的估计器。同时,我们提出了一种数据驱动程序来选择调整参数。模拟研究和血浆β-胡萝卜素水平数据集的应用表明,与其他现有的污染方案方法相比,建议的方法能提供更可靠的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational Statistics
Computational Statistics 数学-统计学与概率论
CiteScore
2.90
自引率
0.00%
发文量
122
审稿时长
>12 weeks
期刊介绍: Computational Statistics (CompStat) is an international journal which promotes the publication of applications and methodological research in the field of Computational Statistics. The focus of papers in CompStat is on the contribution to and influence of computing on statistics and vice versa. The journal provides a forum for computer scientists, mathematicians, and statisticians in a variety of fields of statistics such as biometrics, econometrics, data analysis, graphics, simulation, algorithms, knowledge based systems, and Bayesian computing. CompStat publishes hardware, software plus package reports.
期刊最新文献
Bayes estimation of ratio of scale-like parameters for inverse Gaussian distributions and applications to classification Multivariate approaches to investigate the home and away behavior of football teams playing football matches Kendall correlations and radar charts to include goals for and goals against in soccer rankings Bayesian adaptive lasso quantile regression with non-ignorable missing responses Statistical visualisation of tidy and geospatial data in R via kernel smoothing methods in the eks package
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1