{"title":"Robust variable selection for additive coefficient models","authors":"Hang Zou, Xiaowen Huang, Yunlu Jiang","doi":"10.1007/s00180-024-01524-y","DOIUrl":null,"url":null,"abstract":"<p>Additive coefficient models generalize linear regression models by assuming that the relationship between the response and some covariates is linear, while their regression coefficients are additive functions. Because of its advantages in dealing with the “curse of dimensionality”, additive coefficient models gain a lot of attention. The commonly used estimation methods for additive coefficient models are not robust against high leverage points. To circumvent this difficulty, we develop a robust variable selection procedure based on the exponential squared loss function and group penalty for the additive coefficient models, which can tackle outliers in the response and covariates simultaneously. Under some regularity conditions, we show that the oracle estimator is a local solution of the proposed method. Furthermore, we apply the local linear approximation and minorization-maximization algorithm for the implementation of the proposed estimator. Meanwhile, we propose a data-driven procedure to select the tuning parameters. Simulation studies and an application to a plasma beta-carotene level data set illustrate that the proposed method can offer more reliable results than other existing methods in contamination schemes.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00180-024-01524-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Additive coefficient models generalize linear regression models by assuming that the relationship between the response and some covariates is linear, while their regression coefficients are additive functions. Because of its advantages in dealing with the “curse of dimensionality”, additive coefficient models gain a lot of attention. The commonly used estimation methods for additive coefficient models are not robust against high leverage points. To circumvent this difficulty, we develop a robust variable selection procedure based on the exponential squared loss function and group penalty for the additive coefficient models, which can tackle outliers in the response and covariates simultaneously. Under some regularity conditions, we show that the oracle estimator is a local solution of the proposed method. Furthermore, we apply the local linear approximation and minorization-maximization algorithm for the implementation of the proposed estimator. Meanwhile, we propose a data-driven procedure to select the tuning parameters. Simulation studies and an application to a plasma beta-carotene level data set illustrate that the proposed method can offer more reliable results than other existing methods in contamination schemes.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.