Smart contract vulnerabilities detection with bidirectional encoder representations from transformers and control flow graph

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-07-10 DOI:10.1007/s00530-024-01406-9
Peng Su, Jingyuan Hu
{"title":"Smart contract vulnerabilities detection with bidirectional encoder representations from transformers and control flow graph","authors":"Peng Su, Jingyuan Hu","doi":"10.1007/s00530-024-01406-9","DOIUrl":null,"url":null,"abstract":"<p>Up to now, the smart contract vulnerabilities detection methods based on sequence modal data and sequence models have been the most commonly used. However, existing state-of-the-art methods disregard the issue of sequence modal data loses structural information and control flow information. Additionally, it is hard for sequence models to extract global features of smart contracts. Moreover, these methods rarely consider the impact of noise data on vulnerabilities detection. To tackle these issues, we propose a smart contract vulnerabilities detection model based on bidirectional encoder representation from transformers (BERT) and control flow graph (CFG). On the one hand, we design a denoising method suitable for control flow graphs to reduce the impact of noisy data on vulnerabilities detection. On the other hand, we design a novel method to parse the control flow graph into a BERT input form that retains control flow information and structural information. The BERT learns the potential vulnerability characteristics of smart contracts to fine-tune itself. Through an empirical evaluation of a large-scale real-world dataset and compare 5 state-of-the-art baseline methods. Our method achieves (1) optimal performance over all baseline methods; (2) 0.6–17.1% higher F1-score than baseline methods; (3) 0.7–16.7% higher accuracy than baseline methods; (4) 0.6–17% higher precision than baseline methods; (5) 0.2–19.5% higher recall than baseline methods.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00530-024-01406-9","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Up to now, the smart contract vulnerabilities detection methods based on sequence modal data and sequence models have been the most commonly used. However, existing state-of-the-art methods disregard the issue of sequence modal data loses structural information and control flow information. Additionally, it is hard for sequence models to extract global features of smart contracts. Moreover, these methods rarely consider the impact of noise data on vulnerabilities detection. To tackle these issues, we propose a smart contract vulnerabilities detection model based on bidirectional encoder representation from transformers (BERT) and control flow graph (CFG). On the one hand, we design a denoising method suitable for control flow graphs to reduce the impact of noisy data on vulnerabilities detection. On the other hand, we design a novel method to parse the control flow graph into a BERT input form that retains control flow information and structural information. The BERT learns the potential vulnerability characteristics of smart contracts to fine-tune itself. Through an empirical evaluation of a large-scale real-world dataset and compare 5 state-of-the-art baseline methods. Our method achieves (1) optimal performance over all baseline methods; (2) 0.6–17.1% higher F1-score than baseline methods; (3) 0.7–16.7% higher accuracy than baseline methods; (4) 0.6–17% higher precision than baseline methods; (5) 0.2–19.5% higher recall than baseline methods.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用变换器和控制流图的双向编码器表示检测智能合约漏洞
迄今为止,基于序列模态数据和序列模型的智能合约漏洞检测方法最为常用。然而,现有的先进方法忽略了序列模态数据丢失结构信息和控制流信息的问题。此外,序列模型很难提取智能合约的全局特征。此外,这些方法很少考虑噪声数据对漏洞检测的影响。为了解决这些问题,我们提出了一种基于变压器双向编码器表示法(BERT)和控制流图(CFG)的智能合约漏洞检测模型。一方面,我们设计了一种适用于控制流图的去噪方法,以减少噪声数据对漏洞检测的影响。另一方面,我们设计了一种新方法,将控制流图解析为 BERT 输入形式,其中保留了控制流信息和结构信息。BERT 可以学习智能合约的潜在漏洞特征,从而对自身进行微调。通过对大规模真实数据集进行实证评估,并与 5 种最先进的基线方法进行比较。我们的方法取得了(1)优于所有基线方法的最佳性能;(2)比基线方法高出 0.6-17.1% 的 F1 分数;(3)比基线方法高出 0.7-16.7% 的准确率;(4)比基线方法高出 0.6-17% 的精确度;(5)比基线方法高出 0.2-19.5% 的召回率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1