Integration of buried nanomagnet and silicon spin qubits in a one-dimensional fin structure

IF 1.5 4区 物理与天体物理 Q3 PHYSICS, APPLIED Japanese Journal of Applied Physics Pub Date : 2024-07-09 DOI:10.35848/1347-4065/ad59ea
Shota Iizuka, Kimihiko Kato, Atsushi Yagishita, Hidehiro Asai, Tetsuya Ueda, Hiroshi Oka, Junichi Hattori, Tsutomu Ikegami, Koichi Fukuda, Takahiro Mori
{"title":"Integration of buried nanomagnet and silicon spin qubits in a one-dimensional fin structure","authors":"Shota Iizuka, Kimihiko Kato, Atsushi Yagishita, Hidehiro Asai, Tetsuya Ueda, Hiroshi Oka, Junichi Hattori, Tsutomu Ikegami, Koichi Fukuda, Takahiro Mori","doi":"10.35848/1347-4065/ad59ea","DOIUrl":null,"url":null,"abstract":"We adopt a buried nanomagnet (BNM) technology on a one-dimensional (1D) array of silicon spin qubits, and its availability was investigated using numerical simulations. The qubit array is formed in the center of the Si fin and the nanomagnet is buried in the lower lateral part of the qubits. The nanomagnet placed near the qubit generates a strong slanting magnetic field in the qubit, enabling X-gate operation approximately 15 times faster than in conventional cases. Furthermore, the formation of a BNM using a self-aligned process suppresses the dimensional variation of the nanomagnet caused by process variation, thereby mitigating the slanting field fluctuation and fidelity degradation. In addition, even for multiple qubits formed in the Si fin, the BNM with excess length generated a uniform slanting field, mitigating fidelity degradation and enabling all qubits to operate using a single-frequency microwave. Therefore, the proposed structure is useful for 1D integrated structures.","PeriodicalId":14741,"journal":{"name":"Japanese Journal of Applied Physics","volume":"13 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japanese Journal of Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.35848/1347-4065/ad59ea","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We adopt a buried nanomagnet (BNM) technology on a one-dimensional (1D) array of silicon spin qubits, and its availability was investigated using numerical simulations. The qubit array is formed in the center of the Si fin and the nanomagnet is buried in the lower lateral part of the qubits. The nanomagnet placed near the qubit generates a strong slanting magnetic field in the qubit, enabling X-gate operation approximately 15 times faster than in conventional cases. Furthermore, the formation of a BNM using a self-aligned process suppresses the dimensional variation of the nanomagnet caused by process variation, thereby mitigating the slanting field fluctuation and fidelity degradation. In addition, even for multiple qubits formed in the Si fin, the BNM with excess length generated a uniform slanting field, mitigating fidelity degradation and enabling all qubits to operate using a single-frequency microwave. Therefore, the proposed structure is useful for 1D integrated structures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在一维鳍结构中集成埋入式纳米磁体和硅自旋量子比特
我们在一维(1D)硅自旋量子比特阵列上采用了埋入式纳米磁体(BNM)技术,并通过数值模拟研究了该技术的可用性。量子位阵列形成于硅翅片的中心,纳米磁体埋设在量子位的下侧部分。放置在量子位附近的纳米磁体会在量子位中产生强大的斜磁场,从而使 X 门的运行速度比传统情况下快约 15 倍。此外,利用自对准工艺形成的 BNM 可抑制纳米磁体因工艺变化而产生的尺寸变化,从而减轻斜磁场波动和保真度下降。此外,即使在硅翅片中形成多个量子比特,超长的 BNM 也能产生均匀的斜场,从而减轻保真度下降,并使所有量子比特都能使用单频微波工作。因此,所提出的结构适用于一维集成结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Japanese Journal of Applied Physics
Japanese Journal of Applied Physics 物理-物理:应用
CiteScore
3.00
自引率
26.70%
发文量
818
审稿时长
3.5 months
期刊介绍: The Japanese Journal of Applied Physics (JJAP) is an international journal for the advancement and dissemination of knowledge in all fields of applied physics. JJAP is a sister journal of the Applied Physics Express (APEX) and is published by IOP Publishing Ltd on behalf of the Japan Society of Applied Physics (JSAP). JJAP publishes articles that significantly contribute to the advancements in the applications of physical principles as well as in the understanding of physics in view of particular applications in mind. Subjects covered by JJAP include the following fields: • Semiconductors, dielectrics, and organic materials • Photonics, quantum electronics, optics, and spectroscopy • Spintronics, superconductivity, and strongly correlated materials • Device physics including quantum information processing • Physics-based circuits and systems • Nanoscale science and technology • Crystal growth, surfaces, interfaces, thin films, and bulk materials • Plasmas, applied atomic and molecular physics, and applied nuclear physics • Device processing, fabrication and measurement technologies, and instrumentation • Cross-disciplinary areas such as bioelectronics/photonics, biosensing, environmental/energy technologies, and MEMS
期刊最新文献
Thick piezoelectric films by aerosol deposition at room temperature: corona poling and force sensing Research on optical properties of Eu3+ doped bismuth silicate crystals based on first principles Effect of gas injection pattern on magnetically expanding rf plasma source Rotary pump using underwater electrical discharge Formation conditions of the tungsten porous thin film with pulsed laser deposition under various gas atmosphere
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1