Co3+ Doped CdFe2O4 Nanoparticles: Structural, Optical, Magnetic, and Electrical Properties

IF 1.8 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY ECS Journal of Solid State Science and Technology Pub Date : 2024-07-09 DOI:10.1149/2162-8777/ad5dfb
G. Satayanarayana Goud, Nakiraboina Venkatesh, D. Ravi Kumar, Syed Ismail Ahmad and P. Veerasomaiah
{"title":"Co3+ Doped CdFe2O4 Nanoparticles: Structural, Optical, Magnetic, and Electrical Properties","authors":"G. Satayanarayana Goud, Nakiraboina Venkatesh, D. Ravi Kumar, Syed Ismail Ahmad and P. Veerasomaiah","doi":"10.1149/2162-8777/ad5dfb","DOIUrl":null,"url":null,"abstract":"Through the citrate-gel auto-combustion technique, we synthesized Co-doped cadmium nano ferrites (NFs) with the formula CoxCd1−xFe2O4 (where 0 ≤ x ≤ 1.0 with increments of 0.2). The synthesized materials underwent comprehensive analysis utilizing X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and X-ray photoelectron spectroscopy. Magnetic and electrical properties were evaluated using a vibrating sample magnetometer and LCR meter, respectively. XRD analysis confirmed the spinel phase structure and FD3M space group. SEM analysis revealed agglomerations of nanoparticles and grain boundaries. Elemental analysis of the synthesized nanomaterials was provided by energy dispersive spectroscopy. FTIR spectroscopy identified two main broad bands corresponding to the tetrahedral (A) and octahedral (B) sites, confirming the spinel structure. Magnetic properties such as magnetic saturation, coercivity, and remanent magnetization were characterized using VSM. Additionally, the LCR meter assessed frequency and temperature-dependent dielectric parameters, including AC conductivity (σAC), dielectric permittivity, dielectric loss (tan δ), and impedance spectra. An increase in AC conductivity (σAC) was observed with increasing temperature and frequency.","PeriodicalId":11496,"journal":{"name":"ECS Journal of Solid State Science and Technology","volume":"37 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Journal of Solid State Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1149/2162-8777/ad5dfb","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Through the citrate-gel auto-combustion technique, we synthesized Co-doped cadmium nano ferrites (NFs) with the formula CoxCd1−xFe2O4 (where 0 ≤ x ≤ 1.0 with increments of 0.2). The synthesized materials underwent comprehensive analysis utilizing X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and X-ray photoelectron spectroscopy. Magnetic and electrical properties were evaluated using a vibrating sample magnetometer and LCR meter, respectively. XRD analysis confirmed the spinel phase structure and FD3M space group. SEM analysis revealed agglomerations of nanoparticles and grain boundaries. Elemental analysis of the synthesized nanomaterials was provided by energy dispersive spectroscopy. FTIR spectroscopy identified two main broad bands corresponding to the tetrahedral (A) and octahedral (B) sites, confirming the spinel structure. Magnetic properties such as magnetic saturation, coercivity, and remanent magnetization were characterized using VSM. Additionally, the LCR meter assessed frequency and temperature-dependent dielectric parameters, including AC conductivity (σAC), dielectric permittivity, dielectric loss (tan δ), and impedance spectra. An increase in AC conductivity (σAC) was observed with increasing temperature and frequency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
掺杂 Co3+ 的 CdFe2O4 纳米粒子:结构、光学、磁学和电学特性
通过柠檬酸凝胶自动燃烧技术,我们合成了钴掺杂的纳米镉铁氧体(NFs),其化学式为 CoxCd1-xFe2O4(其中 0 ≤ x ≤ 1.0,增量为 0.2)。利用 X 射线衍射 (XRD)、扫描电子显微镜 (SEM)、傅立叶变换红外光谱 (FTIR) 和 X 射线光电子能谱对合成材料进行了全面分析。磁性和电性分别使用振动样品磁力计和 LCR 计进行了评估。XRD 分析证实了尖晶石相结构和 FD3M 空间群。扫描电镜分析显示了纳米颗粒的团聚和晶界。能谱仪对合成的纳米材料进行了元素分析。傅立叶变换红外光谱确定了与四面体(A)和八面体(B)位点相对应的两个主要宽带,证实了尖晶石结构。磁饱和度、矫顽力和剩磁等磁性能是用 VSM 表征的。此外,LCR 计还评估了频率和温度相关的介电参数,包括交流电导率(σAC)、介电常数、介电损耗(tan δ)和阻抗谱。观察到交流电导率(σAC)随着温度和频率的升高而增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ECS Journal of Solid State Science and Technology
ECS Journal of Solid State Science and Technology MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
4.50
自引率
13.60%
发文量
455
期刊介绍: The ECS Journal of Solid State Science and Technology (JSS) was launched in 2012, and publishes outstanding research covering fundamental and applied areas of solid state science and technology, including experimental and theoretical aspects of the chemistry and physics of materials and devices. JSS has five topical interest areas: carbon nanostructures and devices dielectric science and materials electronic materials and processing electronic and photonic devices and systems luminescence and display materials, devices and processing.
期刊最新文献
Au-free V/Al/Pt Contacts on n-Al0.85Ga0.15N:Si Surfaces of Far-UVC LEDs Structural Characteristics and Dielectric Properties of Deposited Silver Nanoparticles with Polypyrrole on PET Films for Dielectric Devices Modification of Structural, Optical, and Electrical Properties of PVA/PVP Blend Filled by Nanostructured Titanium Dioxide for Optoelectronic Applications Low Contact Resistance via Quantum Well Structure in Amorphous InMoO Thin Film Transistors Comparative Analysis of 50 MeV Li3+ and 100 MeV O7+ Ion Beam Induced Electrical Modifications in Silicon Photodetectors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1