Optimization dynamics and fluctuations in the self-organization of vascular networks

Konstantin Klemm, Erik Andreas Martens
{"title":"Optimization dynamics and fluctuations in the self-organization of vascular networks","authors":"Konstantin Klemm, Erik Andreas Martens","doi":"arxiv-2407.04120","DOIUrl":null,"url":null,"abstract":"The model by Hu and Cai [Phys. Rev. Lett., Vol. 111(13) (2013)1 ] describes\nthe self-organization of vascular networks for transport of fluids from source\nto sinks. Diameters, and thereby conductances, of vessel segments evolve so as\nto minimize a cost functional E. The cost is the trade-off between the power\nrequired for pumping the fluid and the energy consumption for vessel\nmaintenance. The model has been used to show emergence of cyclic structures in\nthe presence of locally fluctuating demand, i.e. non-constant net flow at sink\nnodes. Under rapid and sufficiently large fluctuations, the dynamics exhibits\nbistability of tree-like and cyclic network structures. We compare these\nsolutions in terms of the cost functional E. Close to the saddle-node\nbifurcation giving rise to the cyclic solutions, we find a parameter regime\nwhere the tree-like solution rather than the cyclic solution is cost-optimal.\nFurther increase of fluctuation amplitude then leads to an additional\ntransition at which the cyclic solution becomes optimal. The findings hold both\nin a small system of one source and two sinks and in an empirical vascular\nnetwork with hundreds of sinks. In the small system, we further analyze the\ncase of slower fluctuations, i.e., on the same time scale as network\nadaptation. We find that the noisy dynamics settles around the cyclic\nstructures even when these structures are not cost-optimal.","PeriodicalId":501305,"journal":{"name":"arXiv - PHYS - Adaptation and Self-Organizing Systems","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Adaptation and Self-Organizing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.04120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The model by Hu and Cai [Phys. Rev. Lett., Vol. 111(13) (2013)1 ] describes the self-organization of vascular networks for transport of fluids from source to sinks. Diameters, and thereby conductances, of vessel segments evolve so as to minimize a cost functional E. The cost is the trade-off between the power required for pumping the fluid and the energy consumption for vessel maintenance. The model has been used to show emergence of cyclic structures in the presence of locally fluctuating demand, i.e. non-constant net flow at sink nodes. Under rapid and sufficiently large fluctuations, the dynamics exhibits bistability of tree-like and cyclic network structures. We compare these solutions in terms of the cost functional E. Close to the saddle-node bifurcation giving rise to the cyclic solutions, we find a parameter regime where the tree-like solution rather than the cyclic solution is cost-optimal. Further increase of fluctuation amplitude then leads to an additional transition at which the cyclic solution becomes optimal. The findings hold both in a small system of one source and two sinks and in an empirical vascular network with hundreds of sinks. In the small system, we further analyze the case of slower fluctuations, i.e., on the same time scale as network adaptation. We find that the noisy dynamics settles around the cyclic structures even when these structures are not cost-optimal.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
血管网络自组织中的优化动力学和波动性
Hu 和 Cai [Phys. Rev. Lett.该成本是泵送流体所需的功率与血管维护所消耗的能量之间的权衡。该模型已被用于显示局部波动需求(即下沉节点处的非恒定净流量)情况下出现的循环结构。在快速和足够大的波动条件下,动力学表现出树状和循环网络结构的稳定性。在接近产生循环解的鞍节点分叉处,我们发现了一个参数体系,在该体系中,树状解而不是循环解是成本最优的。这些发现在由一个源和两个汇组成的小型系统和由数百个汇组成的经验血管网络中都成立。在小型系统中,我们进一步分析了波动较慢的情况,即与网络适应的时间尺度相同。我们发现,即使循环结构不是成本最优的,噪声动态也会在这些结构周围稳定下来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Expected and unexpected routes to synchronization in a system of swarmalators Synchronization cluster bursting in adaptive oscillators networks The forced one-dimensional swarmalator model Periodic systems have new classes of synchronization stability Reduced-order adaptive synchronization in a chaotic neural network with parameter mismatch: A dynamical system vs. machine learning approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1