Gaussian process regression with log-linear scaling for common non-stationary kernels

P. Michael Kielstra, Michael Lindsey
{"title":"Gaussian process regression with log-linear scaling for common non-stationary kernels","authors":"P. Michael Kielstra, Michael Lindsey","doi":"arxiv-2407.03608","DOIUrl":null,"url":null,"abstract":"We introduce a fast algorithm for Gaussian process regression in low\ndimensions, applicable to a widely-used family of non-stationary kernels. The\nnon-stationarity of these kernels is induced by arbitrary spatially-varying\nvertical and horizontal scales. In particular, any stationary kernel can be\naccommodated as a special case, and we focus especially on the generalization\nof the standard Mat\\'ern kernel. Our subroutine for kernel matrix-vector\nmultiplications scales almost optimally as $O(N\\log N)$, where $N$ is the\nnumber of regression points. Like the recently developed equispaced Fourier\nGaussian process (EFGP) methodology, which is applicable only to stationary\nkernels, our approach exploits non-uniform fast Fourier transforms (NUFFTs). We\noffer a complete analysis controlling the approximation error of our method,\nand we validate the method's practical performance with numerical experiments.\nIn particular we demonstrate improved scalability compared to to\nstate-of-the-art rank-structured approaches in spatial dimension $d>1$.","PeriodicalId":501215,"journal":{"name":"arXiv - STAT - Computation","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.03608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a fast algorithm for Gaussian process regression in low dimensions, applicable to a widely-used family of non-stationary kernels. The non-stationarity of these kernels is induced by arbitrary spatially-varying vertical and horizontal scales. In particular, any stationary kernel can be accommodated as a special case, and we focus especially on the generalization of the standard Mat\'ern kernel. Our subroutine for kernel matrix-vector multiplications scales almost optimally as $O(N\log N)$, where $N$ is the number of regression points. Like the recently developed equispaced Fourier Gaussian process (EFGP) methodology, which is applicable only to stationary kernels, our approach exploits non-uniform fast Fourier transforms (NUFFTs). We offer a complete analysis controlling the approximation error of our method, and we validate the method's practical performance with numerical experiments. In particular we demonstrate improved scalability compared to to state-of-the-art rank-structured approaches in spatial dimension $d>1$.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
普通非稳态核的对数线性缩放高斯过程回归
我们介绍了一种用于低维度高斯过程回归的快速算法,它适用于广泛使用的非稳态核系列。这些核的非稳态性是由任意空间变化的垂直和水平尺度引起的。特别是,任何静止核都可以作为特例来处理,我们尤其关注标准 Mat\'ern 核的广义化。我们的核矩阵-向量乘法子程序几乎以最优方式缩放为 $O(N/log N)$,其中 $N$ 是回归点的数量。最近开发的等距傅立叶高斯过程(EFGP)方法只适用于静态核,而我们的方法则利用了非均匀快速傅立叶变换(NUFFT)。我们提供了控制我们方法近似误差的完整分析,并通过数值实验验证了该方法的实用性能,特别是在空间维度 $d>1$ 的情况下,与最先进的秩结构方法相比,我们证明了该方法具有更好的可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model-Embedded Gaussian Process Regression for Parameter Estimation in Dynamical System Effects of the entropy source on Monte Carlo simulations A Robust Approach to Gaussian Processes Implementation HJ-sampler: A Bayesian sampler for inverse problems of a stochastic process by leveraging Hamilton-Jacobi PDEs and score-based generative models Reducing Shape-Graph Complexity with Application to Classification of Retinal Blood Vessels and Neurons
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1