Generalized Regressed Exponential Estimator for Estimation of Mean Under Neutrosophic Ranked Set Sampling

IF 1.2 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES National Academy Science Letters Pub Date : 2024-07-09 DOI:10.1007/s40009-024-01412-5
Bharti Khanna
{"title":"Generalized Regressed Exponential Estimator for Estimation of Mean Under Neutrosophic Ranked Set Sampling","authors":"Bharti Khanna","doi":"10.1007/s40009-024-01412-5","DOIUrl":null,"url":null,"abstract":"<div><p>This manuscript uses neutrosophic ranked set sampling to handle the data involving uncertainty and proposed generalized regressed exponential estimator for estimating the mean under neutrosophic ranked set sampling. The fundamental properties like bias and mean square error of the proposed estimator are calculated up to the first order of approximation. The conditions under which the proposed estimator is better than the promising existing estimators have been derived. Mathematical study has been carried out to support the theoretical results and proved the efficiency of the proposed estimator over the promising existing estimators.</p></div>","PeriodicalId":717,"journal":{"name":"National Academy Science Letters","volume":"47 6","pages":"719 - 725"},"PeriodicalIF":1.2000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"National Academy Science Letters","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s40009-024-01412-5","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This manuscript uses neutrosophic ranked set sampling to handle the data involving uncertainty and proposed generalized regressed exponential estimator for estimating the mean under neutrosophic ranked set sampling. The fundamental properties like bias and mean square error of the proposed estimator are calculated up to the first order of approximation. The conditions under which the proposed estimator is better than the promising existing estimators have been derived. Mathematical study has been carried out to support the theoretical results and proved the efficiency of the proposed estimator over the promising existing estimators.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于估计中性排序集采样下平均值的广义回归指数估计器
本手稿使用中性排序集抽样来处理涉及不确定性的数据,并提出了广义回归指数估计器,用于估计中性排序集抽样下的均值。计算了所提估计器的偏差和均方误差等基本性质,直至近似的第一阶。还推导出了拟议估计器优于现有估计器的条件。为了支持理论结果,还进行了数学研究,证明了所提出的估计器比现有估计器更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
National Academy Science Letters
National Academy Science Letters 综合性期刊-综合性期刊
CiteScore
2.20
自引率
0.00%
发文量
86
审稿时长
12 months
期刊介绍: The National Academy Science Letters is published by the National Academy of Sciences, India, since 1978. The publication of this unique journal was started with a view to give quick and wide publicity to the innovations in all fields of science
期刊最新文献
On the Modeling of Two Covid-19 Data Sets Using a Generalized Log-Exponential Transformed Distribution Hypoestes phyllostachya Baker: A New Record of Invasive Alien Plant Species from Uttarakhand, India Comparison of Different Signal Peptide Targeting EGFP Translocation Periplasm in Salmonella Bistorta coriacea (Sam.) Yonek. & H.Ohashi (Polygonaceae): An Addition to the Angiospermic Flora of India Bacterial Wilt Caused by Ralstonia solanacearum: A Potential Threat to Brinjal Cultivated in Sikkim, India
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1