Parameter identification and uncertainty propagation of hydrogel coupled diffusion-deformation using POD-based reduced-order modeling

IF 3.7 2区 工程技术 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Computational Mechanics Pub Date : 2024-07-08 DOI:10.1007/s00466-024-02517-w
Gopal Agarwal, Jorge-Humberto Urrea-Quintero, Henning Wessels, Thomas Wick
{"title":"Parameter identification and uncertainty propagation of hydrogel coupled diffusion-deformation using POD-based reduced-order modeling","authors":"Gopal Agarwal, Jorge-Humberto Urrea-Quintero, Henning Wessels, Thomas Wick","doi":"10.1007/s00466-024-02517-w","DOIUrl":null,"url":null,"abstract":"<p>This study explores reduced-order modeling for analyzing time-dependent diffusion-deformation of hydrogels. The full-order model describing hydrogel transient behavior consists of a coupled system of partial differential equations in which the chemical potential and displacements are coupled. This system is formulated in a monolithic fashion and solved using the finite element method. We employ proper orthogonal decomposition as a model order reduction approach. The reduced-order model performance is tested through a benchmark problem on hydrogel swelling and a case study simulating co-axial printing. Then, we embed the reduced-order model into an optimization loop to efficiently identify the coupled problem’s material parameters using full-field data. Finally, a study is conducted on the uncertainty propagation of the material parameter.</p>","PeriodicalId":55248,"journal":{"name":"Computational Mechanics","volume":"144 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00466-024-02517-w","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores reduced-order modeling for analyzing time-dependent diffusion-deformation of hydrogels. The full-order model describing hydrogel transient behavior consists of a coupled system of partial differential equations in which the chemical potential and displacements are coupled. This system is formulated in a monolithic fashion and solved using the finite element method. We employ proper orthogonal decomposition as a model order reduction approach. The reduced-order model performance is tested through a benchmark problem on hydrogel swelling and a case study simulating co-axial printing. Then, we embed the reduced-order model into an optimization loop to efficiently identify the coupled problem’s material parameters using full-field data. Finally, a study is conducted on the uncertainty propagation of the material parameter.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用基于 POD 的降阶建模技术识别水凝胶耦合扩散变形的参数并传播其不确定性
本研究探索了用于分析水凝胶随时间变化的扩散变形的降阶模型。描述水凝胶瞬态行为的全阶模型包括一个耦合偏微分方程系统,其中化学势和位移是耦合的。该系统以整体方式制定,并使用有限元法求解。我们采用适当的正交分解作为模型降阶方法。通过水凝胶溶胀的基准问题和模拟同轴印刷的案例研究,测试了降阶模型的性能。然后,我们将降阶模型嵌入优化循环,利用全场数据有效地确定耦合问题的材料参数。最后,我们对材料参数的不确定性传播进行了研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational Mechanics
Computational Mechanics 物理-力学
CiteScore
7.80
自引率
12.20%
发文量
122
审稿时长
3.4 months
期刊介绍: The journal reports original research of scholarly value in computational engineering and sciences. It focuses on areas that involve and enrich the application of mechanics, mathematics and numerical methods. It covers new methods and computationally-challenging technologies. Areas covered include method development in solid, fluid mechanics and materials simulations with application to biomechanics and mechanics in medicine, multiphysics, fracture mechanics, multiscale mechanics, particle and meshfree methods. Additionally, manuscripts including simulation and method development of synthesis of material systems are encouraged. Manuscripts reporting results obtained with established methods, unless they involve challenging computations, and manuscripts that report computations using commercial software packages are not encouraged.
期刊最新文献
An improved thermomechanical model for the prediction of stress and strain evolution in proximity to the melt pool in powder bed fusion additive manufacturing A consistent discretization via the finite radon transform for FFT-based computational micromechanics On the use of scaled boundary shape functions in adaptive phase field modeling of brittle fracture Efficient and accurate analysis of locally resonant acoustic metamaterial plates using computational homogenization Modeling cellular self-organization in strain-stiffening hydrogels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1