Crystalline Phase Regulates Microbial Methylation Potential of Mercury Bound to MoS2 Nanosheets: Implications for Safe Design of Mercury Removal Materials.

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL 环境科学与技术 Pub Date : 2024-07-23 Epub Date: 2024-07-11 DOI:10.1021/acs.est.4c01552
Wenyu Guan, Zhanhua Zhang, Yaqi Liu, Yunyun Ji, Xin Tong, Yaqi Liu, Jiubin Chen, Pedro J J Alvarez, Wei Chen, Tong Zhang
{"title":"Crystalline Phase Regulates Microbial Methylation Potential of Mercury Bound to MoS<sub>2</sub> Nanosheets: Implications for Safe Design of Mercury Removal Materials.","authors":"Wenyu Guan, Zhanhua Zhang, Yaqi Liu, Yunyun Ji, Xin Tong, Yaqi Liu, Jiubin Chen, Pedro J J Alvarez, Wei Chen, Tong Zhang","doi":"10.1021/acs.est.4c01552","DOIUrl":null,"url":null,"abstract":"<p><p>Transition-metal dichalcogenides (TMDs) have shown great promise as selective and high-capacity sorbents for Hg(II) removal from water. Yet, their design should consider safe disposal of spent materials, particularly the subsequent formation of methylmercury (MeHg), a highly potent and bioaccumulative neurotoxin. Here, we show that microbial methylation of mercury bound to MoS<sub>2</sub> nanosheets (a representative TMD material) is significant under anoxic conditions commonly encountered in landfills. Notably, the methylation potential is highly dependent on the phase compositions of MoS<sub>2</sub>. MeHg production was higher for 1T MoS<sub>2</sub>, as mercury bound to this phase primarily exists as surface complexes that are available for ligand exchange. In comparison, mercury on 2H MoS<sub>2</sub> occurs largely in the form of precipitates, particularly monovalent mercury minerals (e.g., Hg<sub>2</sub>MoO<sub>4</sub> and Hg<sub>2</sub>SO<sub>4</sub>) that are minimally bioavailable. Thus, even though 1T MoS<sub>2</sub> is more effective in Hg(II) removal from aqueous solution due to its higher adsorption affinity and reductive ability, it poses a higher risk of MeHg formation after landfill disposal. These findings highlight the critical role of nanoscale surfaces in enriching heavy metals and subsequently regulating their bioavailability and risks and shed light on the safe design of heavy metal sorbent materials through surface structural modulation.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":null,"pages":null},"PeriodicalIF":10.8000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c01552","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Transition-metal dichalcogenides (TMDs) have shown great promise as selective and high-capacity sorbents for Hg(II) removal from water. Yet, their design should consider safe disposal of spent materials, particularly the subsequent formation of methylmercury (MeHg), a highly potent and bioaccumulative neurotoxin. Here, we show that microbial methylation of mercury bound to MoS2 nanosheets (a representative TMD material) is significant under anoxic conditions commonly encountered in landfills. Notably, the methylation potential is highly dependent on the phase compositions of MoS2. MeHg production was higher for 1T MoS2, as mercury bound to this phase primarily exists as surface complexes that are available for ligand exchange. In comparison, mercury on 2H MoS2 occurs largely in the form of precipitates, particularly monovalent mercury minerals (e.g., Hg2MoO4 and Hg2SO4) that are minimally bioavailable. Thus, even though 1T MoS2 is more effective in Hg(II) removal from aqueous solution due to its higher adsorption affinity and reductive ability, it poses a higher risk of MeHg formation after landfill disposal. These findings highlight the critical role of nanoscale surfaces in enriching heavy metals and subsequently regulating their bioavailability and risks and shed light on the safe design of heavy metal sorbent materials through surface structural modulation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
晶相调节结合到 MoS2 纳米片上的汞的微生物甲基化潜力:对安全设计汞去除材料的影响。
过渡金属二钙化物(TMDs)作为具有选择性和高容量的吸附剂,在去除水中的汞(II)方面大有可为。然而,它们的设计应考虑到废旧材料的安全处置,特别是随后形成的甲基汞(MeHg),这是一种强效的生物累积性神经毒素。在这里,我们展示了在垃圾填埋场常见的缺氧条件下,与 MoS2 纳米片(一种具有代表性的 TMD 材料)结合的汞的微生物甲基化作用非常显著。值得注意的是,甲基化潜力与 MoS2 的相组成密切相关。1T MoS2 的甲基汞产量较高,因为与该相结合的汞主要以表面络合物的形式存在,可以进行配体交换。相比之下,2H MoS2 上的汞主要以沉淀物的形式存在,尤其是一价汞矿物(如 Hg2MoO4 和 Hg2SO4),生物利用率极低。因此,尽管 1T MoS2 因其更高的吸附亲和力和还原能力而能更有效地去除水溶液中的汞(II),但它在填埋处理后形成甲基汞的风险也更高。这些发现凸显了纳米级表面在富集重金属以及随后调节其生物利用率和风险方面的关键作用,并为通过表面结构调控安全设计重金属吸附剂材料提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
期刊最新文献
Resource Recovery from Wastewater: What, Why, and Where? Competitive Binding Kinetics of Methylmercury-Cysteine with Dissolved Organic Matter: Critical Impacts of Thiols on Adsorption and Uptake of Methylmercury by Algae. Hyperlocal Air Pollution Mapping: A Scalable Transfer Learning LUR Approach for Mobile Monitoring. Metagenomics and Stable Isotopes Uncover the Augmented Sulfide-Driven Autotrophic Denitrification in a Seasonally Hypoxic, Sulfate-Abundant Reservoir. Enhancing Water Tolerance and N2 Selectivity in NH3–SCR Catalysts by Protecting Mn Oxide Nanoparticles in a Silicalite-1 Layer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1