Composite scaffold of electrospun nano-porous cellulose acetate membrane casted with chitosan for flexible solid-state sodium-ion batteries

IF 16.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Nano Energy Pub Date : 2024-07-05 DOI:10.1016/j.nanoen.2024.109971
Md. Mehadi Hassan , Xiao-Yan Wang , Afshana Afroj Bristi , Ruijie Yang , Xia Li , Qingye Lu
{"title":"Composite scaffold of electrospun nano-porous cellulose acetate membrane casted with chitosan for flexible solid-state sodium-ion batteries","authors":"Md. Mehadi Hassan ,&nbsp;Xiao-Yan Wang ,&nbsp;Afshana Afroj Bristi ,&nbsp;Ruijie Yang ,&nbsp;Xia Li ,&nbsp;Qingye Lu","doi":"10.1016/j.nanoen.2024.109971","DOIUrl":null,"url":null,"abstract":"<div><p>Emerging as a safe and economically viable alternative to lithium-ion batteries, the solid-state sodium ion battery (ss-SIB) has captured increasing attention as a transformative technology for realizing a decarbonized economy and ensuring a sustainable energy supply. Here we report a nanoarchitecture strategy of biodegradable, biocompatible, and naturally abundant cellulose derivative (cellulose acetate, CA) and chitosan (CH) biopolymer-based nano-porous electrospun composite electrolyte (ECE) for flexible and wearable ss-SIBs. A simple combination of electrospinning and solution casting was utilized to fabricate mechanically robust (13.76 MPa), thin-film (0.067 mm), and highly flexible ECE. The ionic conductivity of ECE was enhanced through optimization, taking into account the amount of sodium salt (NaPF<sub>6</sub>). The resulting ECE exhibited a sodium-ion conductivity of 1.04 ×10<sup>−4</sup> S·cm<sup>−</sup><sup>1</sup> and a sodium ion transference number of 0.48 at room temperature (RT=23 °C). The obtained Na<sup>+</sup> transference number of 0.48 and a low activation energy (<em>Ea</em> = 0.13 eV) indicate the easy charge carrier diffusion ability of as-prepared ECE. The electrochemical stability window (ESW = 4.04 V) of ECE is studied by the linear sweep voltammetry (LSV) with the assembly of stainless steel and sodium metal electrodes. Without any interfacial modification, a uniform, stable, and long-time room temperature (RT) galvanostatic Na plating-stripping was observed for 1000 hrs at 0.5 mA·cm<sup>−2</sup> current density in a symmetric (Na|ECE|Na) cell, this underscores impressive electrochemical stability and compatibility of ECE with sodium metal. Utilizing Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> (NVP) as cathode, fabricated ECE, and Na metal as anode in a hybrid full cell, a notable RT specific discharge capacity of 98.1 mA·h·g<sup>−1</sup> was attained at a rate of 0.1 C with a capacity retention of 93.4 % over 120 charge-discharge cycles. This highlights the practical applicability of the nanostructured electrospun composite electrolyte for flexible and wearable ss-SIBs.</p></div>","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":null,"pages":null},"PeriodicalIF":16.8000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2211285524007213/pdfft?md5=9baaba13925f0197dc9679d6f575e252&pid=1-s2.0-S2211285524007213-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211285524007213","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Emerging as a safe and economically viable alternative to lithium-ion batteries, the solid-state sodium ion battery (ss-SIB) has captured increasing attention as a transformative technology for realizing a decarbonized economy and ensuring a sustainable energy supply. Here we report a nanoarchitecture strategy of biodegradable, biocompatible, and naturally abundant cellulose derivative (cellulose acetate, CA) and chitosan (CH) biopolymer-based nano-porous electrospun composite electrolyte (ECE) for flexible and wearable ss-SIBs. A simple combination of electrospinning and solution casting was utilized to fabricate mechanically robust (13.76 MPa), thin-film (0.067 mm), and highly flexible ECE. The ionic conductivity of ECE was enhanced through optimization, taking into account the amount of sodium salt (NaPF6). The resulting ECE exhibited a sodium-ion conductivity of 1.04 ×10−4 S·cm1 and a sodium ion transference number of 0.48 at room temperature (RT=23 °C). The obtained Na+ transference number of 0.48 and a low activation energy (Ea = 0.13 eV) indicate the easy charge carrier diffusion ability of as-prepared ECE. The electrochemical stability window (ESW = 4.04 V) of ECE is studied by the linear sweep voltammetry (LSV) with the assembly of stainless steel and sodium metal electrodes. Without any interfacial modification, a uniform, stable, and long-time room temperature (RT) galvanostatic Na plating-stripping was observed for 1000 hrs at 0.5 mA·cm−2 current density in a symmetric (Na|ECE|Na) cell, this underscores impressive electrochemical stability and compatibility of ECE with sodium metal. Utilizing Na3V2(PO4)3 (NVP) as cathode, fabricated ECE, and Na metal as anode in a hybrid full cell, a notable RT specific discharge capacity of 98.1 mA·h·g−1 was attained at a rate of 0.1 C with a capacity retention of 93.4 % over 120 charge-discharge cycles. This highlights the practical applicability of the nanostructured electrospun composite electrolyte for flexible and wearable ss-SIBs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电纺纳米多孔醋酸纤维素膜与壳聚糖浇铸的复合支架,用于柔性固态钠离子电池
固态钠离子电池(ss-SIB)作为锂离子电池的一种安全且经济可行的替代品,作为实现去碳化经济和确保可持续能源供应的一种变革性技术,已引起越来越多的关注。在此,我们报告了一种基于可生物降解、生物相容性和天然丰富的纤维素衍生物(醋酸纤维素,CA)和壳聚糖(CH)生物聚合物的纳米多孔电纺复合电解质(ECE)的纳米结构策略,用于柔性和可穿戴的 ss-SIB。利用电纺丝和溶液浇铸的简单组合,制造出了机械坚固(13.76 兆帕)、薄膜(0.067 毫米)和高柔性的 ECE。考虑到钠盐(NaPF6)的用量,通过优化提高了 ECE 的离子导电性。所制备的 ECE 在室温(RT=23 ℃)下的钠离子电导率为 1.04 ×10-4 S-cm-1,钠离子转移数为 0.48。0.48 的钠离子转移数和较低的活化能(Ea = 0.13 eV)表明所制备的 ECE 易于电荷载流子扩散。通过线性扫描伏安法(LSV)研究了 ECE 的电化学稳定性窗口(ESW = 4.04 V),并将其与不锈钢和钠金属电极组装在一起。在对称(Na|ECE|Na)电池中,在 0.5 mA-cm-2 电流密度下,没有任何界面改性,就能观察到均匀、稳定和长时间的室温(RT)电静电Na电镀剥离,持续时间长达 1000 小时,这凸显了 ECE 令人印象深刻的电化学稳定性和与金属钠的兼容性。利用 Na3V2(PO4)3 (NVP)作为阴极、制备的 ECE 和金属钠作为阳极的混合全电池,在 0.1 C 的速率下实现了 98.1 mA-h-g-1 的显著 RT 比放电容量,在 120 次充放电循环中的容量保持率为 93.4%。这凸显了纳米结构电纺复合电解质在柔性可穿戴 ss-SIB 中的实际应用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Energy
Nano Energy CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
30.30
自引率
7.40%
发文量
1207
审稿时长
23 days
期刊介绍: Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem. Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.
期刊最新文献
Tellurium Doped Sulfurized Polyacrylonitrile Nanoflower for High-Energy-Density, Long-Lifespan Sodium−Sulfur Batteries Liquid-free, tough and transparent ionic conductive elastomers based on nanocellulose for multi-functional sensors and triboelectric nanogenerators Advancement in indoor energy harvesting through flexible perovskite photovoltaics for self- powered IoT applications Positive Impact of Surface Defects on Maxwell's Displacement Current-driven Nano-LEDs: the Application of TENG Technology Vertical two-dimensional heterostructures and superlattices for lithium batteries and beyond
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1