Bismuth nanoparticles supported on carbon nanotubes for highly efficient production of formate for CO2 electroreduction

IF 8.6 2区 工程技术 Q1 ENERGY & FUELS Sustainable Materials and Technologies Pub Date : 2024-07-06 DOI:10.1016/j.susmat.2024.e01042
Bo Zhang , Guangxing Yang , Qiugai Chai , Hongjuan Wang , Qiao Zhang , Zhiting Liu , Feng Peng
{"title":"Bismuth nanoparticles supported on carbon nanotubes for highly efficient production of formate for CO2 electroreduction","authors":"Bo Zhang ,&nbsp;Guangxing Yang ,&nbsp;Qiugai Chai ,&nbsp;Hongjuan Wang ,&nbsp;Qiao Zhang ,&nbsp;Zhiting Liu ,&nbsp;Feng Peng","doi":"10.1016/j.susmat.2024.e01042","DOIUrl":null,"url":null,"abstract":"<div><p>The electroreduction of CO<sub>2</sub> into formic acid (HCOOH) holds economic value and industrialization potential. Despite that Bi-based materials are effective for producing formic acid, challenges remain due to the insufficient understanding the actual active sites and the lack of facile synthesis of simple materials. We synthesized four bismuth-based catalysts using hydrothermal method (with water as the solvent), which exhibit high selectivity for the reduction of CO<sub>2</sub> to formate. Through comprehensive physical and electrochemical characterizations, we demonstrated that these Bi-based materials underwent reduction and maintained their metallic Bi state at the potentials where CO<sub>2</sub> electroreduction took place. Bulk-Bi displayed the Faradaic efficiency of HCOO<sup>−</sup> higher than 94.3% from −0.90 V to −1.15 V. Moreover, the Faradaic efficiency of HCOO<sup>−</sup> remained above 98.1% over 10 h electrolysis at −1.05 V. This finding suggests that metallic Bi serves as the primary active site for the electroreduction of CO<sub>2</sub> to formate. Leveraging this insight, we effectively enhanced the atomic utilization of Bi metal by directly synthesizing metallic Bi nanoparticles. Our results further indicate that these nanoscale Bi particles maintained a high Faradaic efficiency for HCOO<sup>−</sup> production.</p></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":null,"pages":null},"PeriodicalIF":8.6000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Materials and Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214993724002227","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The electroreduction of CO2 into formic acid (HCOOH) holds economic value and industrialization potential. Despite that Bi-based materials are effective for producing formic acid, challenges remain due to the insufficient understanding the actual active sites and the lack of facile synthesis of simple materials. We synthesized four bismuth-based catalysts using hydrothermal method (with water as the solvent), which exhibit high selectivity for the reduction of CO2 to formate. Through comprehensive physical and electrochemical characterizations, we demonstrated that these Bi-based materials underwent reduction and maintained their metallic Bi state at the potentials where CO2 electroreduction took place. Bulk-Bi displayed the Faradaic efficiency of HCOO higher than 94.3% from −0.90 V to −1.15 V. Moreover, the Faradaic efficiency of HCOO remained above 98.1% over 10 h electrolysis at −1.05 V. This finding suggests that metallic Bi serves as the primary active site for the electroreduction of CO2 to formate. Leveraging this insight, we effectively enhanced the atomic utilization of Bi metal by directly synthesizing metallic Bi nanoparticles. Our results further indicate that these nanoscale Bi particles maintained a high Faradaic efficiency for HCOO production.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在碳纳米管上支持铋纳米粒子,用于高效生产甲酸盐,进行二氧化碳电还原
将二氧化碳电还原成甲酸(HCOOH)具有经济价值和工业化潜力。尽管铋基材料可有效生产甲酸,但由于对实际活性位点的了解不够,以及缺乏简单材料的简易合成,因此仍然存在挑战。我们采用水热法(以水为溶剂)合成了四种铋基催化剂,它们在将 CO2 还原成甲酸酯的过程中表现出高选择性。通过全面的物理和电化学特性分析,我们证明了这些铋基材料在发生二氧化碳电还原反应的电位下会发生还原反应并保持金属态。从 -0.90 V 到 -1.15 V,块状 Bi 材料对 HCOO- 的法拉第效率高于 94.3%。此外,在 -1.05 V 下电解 10 小时,HCOO- 的法拉第效率仍保持在 98.1% 以上。利用这一洞察力,我们通过直接合成金属 Bi 纳米粒子,有效地提高了 Bi 金属的原子利用率。我们的研究结果进一步表明,这些纳米级 Bi 粒子在生产 HCOO- 时保持了较高的法拉第效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Sustainable Materials and Technologies
Sustainable Materials and Technologies Energy-Renewable Energy, Sustainability and the Environment
CiteScore
13.40
自引率
4.20%
发文量
158
审稿时长
45 days
期刊介绍: Sustainable Materials and Technologies (SM&T), an international, cross-disciplinary, fully open access journal published by Elsevier, focuses on original full-length research articles and reviews. It covers applied or fundamental science of nano-, micro-, meso-, and macro-scale aspects of materials and technologies for sustainable development. SM&T gives special attention to contributions that bridge the knowledge gap between materials and system designs.
期刊最新文献
Potential and challenges of recycled polymer plastics and natural waste materials for additive manufacturing Advances and prospects of sulfur quantum dots in food sensing applications A new method to recycle Li-ion batteries with laser materials processing technology Printable ionic liquid modified cellulose acetate for sustainable chromic and resistive temperature sensing Tailoring SrFeO3 cathode with Ta and F allows high performance for proton-conducting solid oxide fuel cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1