Accelerated aging tests of large-diameter GFRP bars in alkaline environment

IF 5.3 Q2 MATERIALS SCIENCE, COMPOSITES Composites Part C Open Access Pub Date : 2024-07-01 DOI:10.1016/j.jcomc.2024.100486
Sheng-Zhao Feng , Jun-Jie Zeng , Bin Zhao , Zhi-Hao Hao , Yan Zhuge , Qing-Ming Zhong , Zhi-Wei Zhang
{"title":"Accelerated aging tests of large-diameter GFRP bars in alkaline environment","authors":"Sheng-Zhao Feng ,&nbsp;Jun-Jie Zeng ,&nbsp;Bin Zhao ,&nbsp;Zhi-Hao Hao ,&nbsp;Yan Zhuge ,&nbsp;Qing-Ming Zhong ,&nbsp;Zhi-Wei Zhang","doi":"10.1016/j.jcomc.2024.100486","DOIUrl":null,"url":null,"abstract":"<div><p>Fiber reinforced polymer (FRP) bars have become increasingly popular, while the studies on durability of FRP bars are primarily on small-diameter FRP bars. This study investigated the tensile strength retention in glass FRP (GFRP) bars of different diameters (13 mm and 25 mm) after immersion in an alkaline solution (pH=12.6) at various temperatures (20 °C, 40 °C and 60 °C) for 1, 2, 3, and 6 months. The results reveal that the degradation of GFRP bars was slow at 20 °C, accelerated but not pronounced at 40 °C and considerable at 60 °C. Particularly, the 13 mm diameter GFRP bars exhibited a more significant reduction in tensile strength, with a decrease of 20.12 % after 6 months, while the 25 mm diameter bars only decreased by 13.23 %. Results reveal that, importantly, degradation of GFRP bars is primarily attributed to the diffusion of the moisture and alkalis, which disrupts the bond between the fibers and the matrix, causing interface damage. Finally, based on the Arrhenius theory, it is predicted that the tensile strength retention of 13 mm and 25 mm diameter GFRP bars will be 66.4 % and 79.8 %, respectively, after 50 years of exposure at an average annual temperature of 35 °C. The important finding that the small-diameter FRP bars are more vulnerable to the alkaline exposure than larger diameter bars suggests that the current studies on durability of FRP bars are conservative to be referred in practice.</p></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666682024000550/pdfft?md5=1a0dacaaa7f06278add5d5c9d98bf19a&pid=1-s2.0-S2666682024000550-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part C Open Access","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666682024000550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

Fiber reinforced polymer (FRP) bars have become increasingly popular, while the studies on durability of FRP bars are primarily on small-diameter FRP bars. This study investigated the tensile strength retention in glass FRP (GFRP) bars of different diameters (13 mm and 25 mm) after immersion in an alkaline solution (pH=12.6) at various temperatures (20 °C, 40 °C and 60 °C) for 1, 2, 3, and 6 months. The results reveal that the degradation of GFRP bars was slow at 20 °C, accelerated but not pronounced at 40 °C and considerable at 60 °C. Particularly, the 13 mm diameter GFRP bars exhibited a more significant reduction in tensile strength, with a decrease of 20.12 % after 6 months, while the 25 mm diameter bars only decreased by 13.23 %. Results reveal that, importantly, degradation of GFRP bars is primarily attributed to the diffusion of the moisture and alkalis, which disrupts the bond between the fibers and the matrix, causing interface damage. Finally, based on the Arrhenius theory, it is predicted that the tensile strength retention of 13 mm and 25 mm diameter GFRP bars will be 66.4 % and 79.8 %, respectively, after 50 years of exposure at an average annual temperature of 35 °C. The important finding that the small-diameter FRP bars are more vulnerable to the alkaline exposure than larger diameter bars suggests that the current studies on durability of FRP bars are conservative to be referred in practice.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
碱性环境中大直径 GFRP 棒材的加速老化试验
纤维增强聚合物(FRP)棒材越来越受欢迎,而对 FRP 棒材耐久性的研究主要针对小直径 FRP 棒材。本研究调查了不同直径(13 毫米和 25 毫米)的玻璃纤维增强塑料(GFRP)条在不同温度(20 °C、40 °C 和 60 °C)的碱性溶液(pH=12.6)中浸泡 1、2、3 和 6 个月后的拉伸强度保持情况。结果表明,GFRP 棒材在 20 °C 时降解缓慢,在 40 °C 时降解加速但不明显,在 60 °C 时降解显著。尤其是直径为 13 毫米的 GFRP 棒材的抗拉强度下降更为明显,6 个月后下降了 20.12%,而直径为 25 毫米的棒材仅下降了 13.23%。结果表明,GFRP 棒材的降解主要归因于水分和碱的扩散,这破坏了纤维与基体之间的结合,导致界面损坏。最后,根据阿伦尼乌斯理论预测,直径分别为 13 毫米和 25 毫米的 GFRP 钢筋在年平均温度为 35 ℃ 的环境中暴露 50 年后,抗拉强度保持率分别为 66.4 % 和 79.8 %。小直径玻璃纤维增强塑料条比大直径条更容易受到碱性暴露的影响,这一重要发现表明,目前关于玻璃纤维增强塑料条耐久性的研究是保守的,在实践中应加以参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Composites Part C Open Access
Composites Part C Open Access Engineering-Mechanical Engineering
CiteScore
8.60
自引率
2.40%
发文量
96
审稿时长
55 days
期刊最新文献
Hybrid lattice structure with micro graphite filler manufactured via additive manufacturing and growth foam polyurethane Cure-induced residual stresses and viscoelastic effects in repaired wind turbine blades: Analytical-numerical investigation Bioinspired surface modification of mussel shells and their application as a biogenic filler in polypropylene composites A review of repairing heat-damaged RC beams using externally bonded- and near-surface mounted-CFRP composites Comparative analysis of delamination resistance in CFRP laminates interleaved by thermoplastic nanoparticle: Evaluating toughening mechanisms in modes I and II
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1