EV Charging Management and Security for Multi-Charging Stations Environment

IF 5.3 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Open Journal of Vehicular Technology Pub Date : 2024-06-24 DOI:10.1109/OJVT.2024.3418201
Safa Hamdare;David J. Brown;Yue Cao;Mohammad Aljaidi;Omprakash Kaiwartya;Rahul Yadav;Pratik Vyas;Manish Jugran
{"title":"EV Charging Management and Security for Multi-Charging Stations Environment","authors":"Safa Hamdare;David J. Brown;Yue Cao;Mohammad Aljaidi;Omprakash Kaiwartya;Rahul Yadav;Pratik Vyas;Manish Jugran","doi":"10.1109/OJVT.2024.3418201","DOIUrl":null,"url":null,"abstract":"The widespread adoption of Electric Vehicles (EV) has emphasized the urgent need for efficient and secure charging infrastructure. While existing research in EV charging infrastructure has primarily concentrated on minimizing charging time at charging stations (CSs), neglecting security-centric charging optimization, particularly with scaled charging infrastructure considering multiple CSs. To address this gap, this paper presents an enhanced Hybrid-Electric Vehicle Charging Management and Security (H-EVCMS) framework. The H-EVCMS framework is meticulously designed to optimize charging price, manage load balancing, and provide security across multiple CS by leveraging the Open Charge Point Protocol (OCPP). The proposed framework's performance is evaluated by examining various charging scenarios and analyzing the booking and power consumption patterns of each CS. The results demonstrate the advantages of the hybrid approach used by the proposed H-EVCMS over traditional charging infrastructure management, showcasing its potential to address the challenges of scaling EV charging infrastructure while ensuring security and efficiency.","PeriodicalId":34270,"journal":{"name":"IEEE Open Journal of Vehicular Technology","volume":"5 ","pages":"807-824"},"PeriodicalIF":5.3000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10569090","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Vehicular Technology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10569090/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The widespread adoption of Electric Vehicles (EV) has emphasized the urgent need for efficient and secure charging infrastructure. While existing research in EV charging infrastructure has primarily concentrated on minimizing charging time at charging stations (CSs), neglecting security-centric charging optimization, particularly with scaled charging infrastructure considering multiple CSs. To address this gap, this paper presents an enhanced Hybrid-Electric Vehicle Charging Management and Security (H-EVCMS) framework. The H-EVCMS framework is meticulously designed to optimize charging price, manage load balancing, and provide security across multiple CS by leveraging the Open Charge Point Protocol (OCPP). The proposed framework's performance is evaluated by examining various charging scenarios and analyzing the booking and power consumption patterns of each CS. The results demonstrate the advantages of the hybrid approach used by the proposed H-EVCMS over traditional charging infrastructure management, showcasing its potential to address the challenges of scaling EV charging infrastructure while ensuring security and efficiency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多充电站环境下的电动汽车充电管理与安全
电动汽车(EV)的广泛应用凸显了对高效、安全充电基础设施的迫切需求。现有的电动汽车充电基础设施研究主要集中在最大限度地缩短充电站(CS)的充电时间,而忽视了以安全为中心的充电优化,特别是在考虑多个 CS 的规模化充电基础设施中。为弥补这一不足,本文提出了一个增强型混合动力电动汽车充电管理与安全(H-EVCMS)框架。H-EVCMS 框架经过精心设计,可优化充电价格、管理负载平衡,并利用开放充电点协议 (OCPP) 为多个 CS 提供安全性。通过研究各种充电场景和分析每个 CS 的预订和功耗模式,对所提出框架的性能进行了评估。结果表明,与传统的充电基础设施管理相比,拟议的 H-EVCMS 采用的混合方法具有优势,展示了其在确保安全和效率的同时应对电动汽车充电基础设施扩展挑战的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.60
自引率
0.00%
发文量
25
审稿时长
10 weeks
期刊最新文献
Efficient Modeling of Interest Forwarding in Information Centric Vehicular Networks Multi-Agent Deep Reinforcement Learning Based Optimizing Joint 3D Trajectories and Phase Shifts in RIS-Assisted UAV-Enabled Wireless Communications Digital Twin-Empowered Green Mobility Management in Next-Gen Transportation Networks Fairness-Aware Utility Maximization for Multi-UAV-Aided Terrestrial Networks LiFi for Industry 4.0: Main Features, Implementation and Initial Testing of IEEE Std 802.15.13
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1