Cellular Uplink Impairments in Vehicular Repeater Deployments

IF 5.3 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Open Journal of Vehicular Technology Pub Date : 2025-01-20 DOI:10.1109/OJVT.2025.3531916
Martin Lerch;Philipp Svoboda;Josef Resch;Markus Rupp
{"title":"Cellular Uplink Impairments in Vehicular Repeater Deployments","authors":"Martin Lerch;Philipp Svoboda;Josef Resch;Markus Rupp","doi":"10.1109/OJVT.2025.3531916","DOIUrl":null,"url":null,"abstract":"Vehicular repeater systems improve the mobile coverage inside railroad cars by amplifying the signals received by a pick-up antenna on the roof and distributing the amplified signals inside the car. Uplink signals are received accordingly in the cars, amplified and transmitted via the roof antenna. At the same time, amplified noise is also transmitted. In uplink direction, this can lead to impairments of mobile communication in the entire cell. However, in vehicular repeater systems there are other sources of uplink interference that could be mistakenly be interpreted as additive noise. In addition to the influence of additive noise, in this paper we investigate the influence of inter-symbol interference due to direct propagation through the windows, interference due to passive intermodulation that can occur in the indoor antenna, and interference due to limited isolation between the indoor and outdoor antenna. We introduce a pathloss model for a vehicle repeater system. Based on this model, we investigate the influence of these different sources of interference on the uplink experimentally. Depending on the kind of interference, we conduct our investigations over different system parameters, such as the penetration loss of the windows, isolation between the indoor and outdoor antenna, and the gain settings of the repeater. The findings presented in this study provide valuable insights for network operators and researchers, facilitating the design of robust and efficient vehicular repeater systems that enhance connectivity and user experience in cellular wireless networks.","PeriodicalId":34270,"journal":{"name":"IEEE Open Journal of Vehicular Technology","volume":"6 ","pages":"487-501"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10848174","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Vehicular Technology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10848174/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Vehicular repeater systems improve the mobile coverage inside railroad cars by amplifying the signals received by a pick-up antenna on the roof and distributing the amplified signals inside the car. Uplink signals are received accordingly in the cars, amplified and transmitted via the roof antenna. At the same time, amplified noise is also transmitted. In uplink direction, this can lead to impairments of mobile communication in the entire cell. However, in vehicular repeater systems there are other sources of uplink interference that could be mistakenly be interpreted as additive noise. In addition to the influence of additive noise, in this paper we investigate the influence of inter-symbol interference due to direct propagation through the windows, interference due to passive intermodulation that can occur in the indoor antenna, and interference due to limited isolation between the indoor and outdoor antenna. We introduce a pathloss model for a vehicle repeater system. Based on this model, we investigate the influence of these different sources of interference on the uplink experimentally. Depending on the kind of interference, we conduct our investigations over different system parameters, such as the penetration loss of the windows, isolation between the indoor and outdoor antenna, and the gain settings of the repeater. The findings presented in this study provide valuable insights for network operators and researchers, facilitating the design of robust and efficient vehicular repeater systems that enhance connectivity and user experience in cellular wireless networks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.60
自引率
0.00%
发文量
25
审稿时长
10 weeks
期刊最新文献
2024 Index IEEE Open Journal of Vehicular Technology Vol. 5 Real-Time Heterogeneous Collaborative Perception in Edge-Enabled Vehicular Environments Coverage Probability of RIS-Assisted Wireless Communication Systems With Random User Deployment Over Nakagami-$m$ Fading Channel CDMA/OTFS Sensing Outperforms Pure OTFS at the Same Communication Throughput Cellular Uplink Impairments in Vehicular Repeater Deployments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1