Cross-Species Segmentation of Animal Prostate Using a Human Prostate Dataset and Limited Preoperative Animal Images: A Sampled Experiment on Dog Prostate Tissue
{"title":"Cross-Species Segmentation of Animal Prostate Using a Human Prostate Dataset and Limited Preoperative Animal Images: A Sampled Experiment on Dog Prostate Tissue","authors":"Yang Yang, Seong Young Ko","doi":"10.1002/ima.23138","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In the development of medical devices and surgical robot systems, animal models are often used for evaluation, necessitating accurate organ segmentation. Deep learning-based image segmentation provides a solution for automatic and precise organ segmentation. However, a significant challenge in this approach arises from the limited availability of training data for animal models. In contrast, human medical image datasets are readily available. To address this imbalance, this study proposes a fine-tuning approach that combines a limited set of animal model images with a comprehensive human image dataset. Various postprocessing algorithms were applied to ensure that the segmentation results met the positioning requirements for the evaluation of a medical robot under development. As one of the target applications, magnetic resonance images were used to determine the position of the dog's prostate, which was then used to determine the target location of the robot under development. The MSD TASK5 dataset was used as the human dataset for pretraining, which involved a modified U-Net network. Ninety-nine pretrained backbone networks were tested as encoders for U-Net. The cross-training validation was performed using the selected network backbone. The highest accuracy, with an IoU score of 0.949, was achieved using the independent validation set from the MSD TASK5 human dataset. Subsequently, fine-tuning was performed using a small set of dog prostate images, resulting in the highest accuracy of an IoU score of 0.961 across different cross-validation groups. The processed results demonstrate the feasibility of the proposed approach for accurate prostate segmentation.</p>\n </div>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"34 4","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.23138","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In the development of medical devices and surgical robot systems, animal models are often used for evaluation, necessitating accurate organ segmentation. Deep learning-based image segmentation provides a solution for automatic and precise organ segmentation. However, a significant challenge in this approach arises from the limited availability of training data for animal models. In contrast, human medical image datasets are readily available. To address this imbalance, this study proposes a fine-tuning approach that combines a limited set of animal model images with a comprehensive human image dataset. Various postprocessing algorithms were applied to ensure that the segmentation results met the positioning requirements for the evaluation of a medical robot under development. As one of the target applications, magnetic resonance images were used to determine the position of the dog's prostate, which was then used to determine the target location of the robot under development. The MSD TASK5 dataset was used as the human dataset for pretraining, which involved a modified U-Net network. Ninety-nine pretrained backbone networks were tested as encoders for U-Net. The cross-training validation was performed using the selected network backbone. The highest accuracy, with an IoU score of 0.949, was achieved using the independent validation set from the MSD TASK5 human dataset. Subsequently, fine-tuning was performed using a small set of dog prostate images, resulting in the highest accuracy of an IoU score of 0.961 across different cross-validation groups. The processed results demonstrate the feasibility of the proposed approach for accurate prostate segmentation.
期刊介绍:
The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals.
IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging.
The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered.
The scope of the journal includes, but is not limited to, the following in the context of biomedical research:
Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.;
Neuromodulation and brain stimulation techniques such as TMS and tDCS;
Software and hardware for imaging, especially related to human and animal health;
Image segmentation in normal and clinical populations;
Pattern analysis and classification using machine learning techniques;
Computational modeling and analysis;
Brain connectivity and connectomics;
Systems-level characterization of brain function;
Neural networks and neurorobotics;
Computer vision, based on human/animal physiology;
Brain-computer interface (BCI) technology;
Big data, databasing and data mining.