π‐d Conjugated Copper Chloranilate with Distorted Cu‐O4 Site for Efficient Electrocatalytic Ammonia Production

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-07-10 DOI:10.1002/adfm.202409064
Chengyong Xing, Jiali Ren, Longlong Fan, Jincheng Zhang, Min Ma, Shaowen Wu, Zhanning Liu, Jian Tian
{"title":"π‐d Conjugated Copper Chloranilate with Distorted Cu‐O4 Site for Efficient Electrocatalytic Ammonia Production","authors":"Chengyong Xing, Jiali Ren, Longlong Fan, Jincheng Zhang, Min Ma, Shaowen Wu, Zhanning Liu, Jian Tian","doi":"10.1002/adfm.202409064","DOIUrl":null,"url":null,"abstract":"Understanding the relationship between electrocatalytic performance and local structure at the molecular level is of great significance. Herein, a bifunctional electrocatalyst CuCA (CA = chloranilate) is constructed for both nitrogen reduction reaction (NRR) and nitrate reduction reaction (NO<jats:sub>3</jats:sub>RR). Combined structural analyses using Rietveld refinement, extended X‐ray adsorption fine structure (EXAFS), and pair distribution function (PDF) revealed a significant distortion of the Cu‐O<jats:sub>4</jats:sub> structure. Benefitting from the unique local structure, Cu‐CA shows an impressive NH<jats:sub>3</jats:sub> yield rate of 286.00 ug h<jats:sup>−1</jats:sup> mg<jats:sup>−1</jats:sup> (FE = 18.25%, ‐0.85 V vs RHE), 3180.00 ug h<jats:sup>−1</jats:sup> mg<jats:sup>−1</jats:sup> (FE = 90.3%, ‐0.9 V vs RHE) for NRR and NO<jats:sub>3</jats:sub>RR, respectively. In contrast, the pyrazine (Pyz) decorated compound Cu‐CA‐Pyz with a less distorted Cu‐O<jats:sub>4</jats:sub> structure and fewer active sites show much lower activity. Density functional theory (DFT) calculations shed light on that the distorted nature can effectively regulate the electron density distribution, which can lower the energy barrier of adsorption and activation of the intermediate species, leading to the enhanced activity. These findings may give new insight into the structural‐property relationship and open up opportunities for the exploration of efficient electrocatalysts.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202409064","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the relationship between electrocatalytic performance and local structure at the molecular level is of great significance. Herein, a bifunctional electrocatalyst CuCA (CA = chloranilate) is constructed for both nitrogen reduction reaction (NRR) and nitrate reduction reaction (NO3RR). Combined structural analyses using Rietveld refinement, extended X‐ray adsorption fine structure (EXAFS), and pair distribution function (PDF) revealed a significant distortion of the Cu‐O4 structure. Benefitting from the unique local structure, Cu‐CA shows an impressive NH3 yield rate of 286.00 ug h−1 mg−1 (FE = 18.25%, ‐0.85 V vs RHE), 3180.00 ug h−1 mg−1 (FE = 90.3%, ‐0.9 V vs RHE) for NRR and NO3RR, respectively. In contrast, the pyrazine (Pyz) decorated compound Cu‐CA‐Pyz with a less distorted Cu‐O4 structure and fewer active sites show much lower activity. Density functional theory (DFT) calculations shed light on that the distorted nature can effectively regulate the electron density distribution, which can lower the energy barrier of adsorption and activation of the intermediate species, leading to the enhanced activity. These findings may give new insight into the structural‐property relationship and open up opportunities for the exploration of efficient electrocatalysts.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有畸变 Cu-O4 位点的 π-d 共轭氯烷化铜用于高效电催化氨生产
了解电催化性能与分子水平局部结构之间的关系具有重要意义。本文构建了一种双功能电催化剂 CuCA(CA = 氯代苯甲酸酯),可用于氮还原反应(NRR)和硝酸还原反应(NO3RR)。利用里特维尔德精炼、扩展 X 射线吸附精细结构(EXAFS)和对分布函数(PDF)进行的综合结构分析表明,Cu-O4 结构发生了显著变形。得益于独特的局部结构,Cu-CA 对 NRR 和 NO3RR 的 NH3 产率分别为 286.00 ug h-1 mg-1(FE = 18.25%,-0.85 V vs RHE)和 3180.00 ug h-1 mg-1(FE = 90.3%,-0.9 V vs RHE),令人印象深刻。相比之下,吡嗪(Pyz)装饰的化合物 Cu-CA-Pyz 的 Cu-O4 结构变形较小,活性位点较少,因此活性要低得多。密度泛函理论(DFT)计算表明,畸变的性质可以有效地调节电子密度分布,从而降低中间物种吸附和活化的能量势垒,导致活性增强。这些发现可能会对结构与性质的关系提出新的见解,并为探索高效电催化剂带来机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Highly Ordered 2D Open Lattices Through Self-Assembly of Magnetic Units Fabrication of Multiscale and Periodically Structured Zirconia Surfaces Using Direct Laser Interference Patterning 2D CrSBr Enables Magnetically Controllable Exciton-Polaritons in an Open Cavity Hydrolytic-Resistance Long-Persistent Luminescence SrAl2O4:Eu2+,Dy3+ Ceramics for Optical Information Storage An Efficient Strategy for Tailoring Interfacial Charge Transfer Pathway on Semiconductor Photocatalysts: A Case of (BiFeO3)x(SrTiO3)1−x/Mn3O4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1