Jayanth Jayakumar, Monika E Mycroft, Marco Barbieri and Magdalena Stobińska
{"title":"Quantum-enhanced joint estimation of phase and phase diffusion","authors":"Jayanth Jayakumar, Monika E Mycroft, Marco Barbieri and Magdalena Stobińska","doi":"10.1088/1367-2630/ad5eb0","DOIUrl":null,"url":null,"abstract":"Accurate phase estimation in the presence of unknown phase diffusive noise is a crucial yet challenging task in noisy quantum metrology. This problem is particularly interesting due to the detrimental impact of the associated noise. Here, we investigate the joint estimation of phase and phase diffusion using generalized Holland–Burnett states, known for their experimental accessibility. These states provide performance close to the optimal state in single-parameter phase estimation, even in the presence of photon losses. We adopt a twofold approach by analyzing the joint information extraction through the double homodyne measurement and the joint information availability across all probe states. Through our analysis, we find that the highest sensitivities are obtained by using states created by directing all input photons into one port of a balanced beam splitter. Furthermore, we infer that good levels of sensitivity persist even in the presence of moderate photon losses, illustrating the remarkable resilience of our probe states under lossy conditions.","PeriodicalId":19181,"journal":{"name":"New Journal of Physics","volume":"17 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1367-2630/ad5eb0","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate phase estimation in the presence of unknown phase diffusive noise is a crucial yet challenging task in noisy quantum metrology. This problem is particularly interesting due to the detrimental impact of the associated noise. Here, we investigate the joint estimation of phase and phase diffusion using generalized Holland–Burnett states, known for their experimental accessibility. These states provide performance close to the optimal state in single-parameter phase estimation, even in the presence of photon losses. We adopt a twofold approach by analyzing the joint information extraction through the double homodyne measurement and the joint information availability across all probe states. Through our analysis, we find that the highest sensitivities are obtained by using states created by directing all input photons into one port of a balanced beam splitter. Furthermore, we infer that good levels of sensitivity persist even in the presence of moderate photon losses, illustrating the remarkable resilience of our probe states under lossy conditions.
期刊介绍:
New Journal of Physics publishes across the whole of physics, encompassing pure, applied, theoretical and experimental research, as well as interdisciplinary topics where physics forms the central theme. All content is permanently free to read and the journal is funded by an article publication charge.