Optimal depth and a novel approach to variational unitary quantum process tomography

IF 2.8 2区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY New Journal of Physics Pub Date : 2024-07-10 DOI:10.1088/1367-2630/ad5df1
Vladlen Galetsky, Pol Julià Farré, Soham Ghosh, Christian Deppe and Roberto Ferrara
{"title":"Optimal depth and a novel approach to variational unitary quantum process tomography","authors":"Vladlen Galetsky, Pol Julià Farré, Soham Ghosh, Christian Deppe and Roberto Ferrara","doi":"10.1088/1367-2630/ad5df1","DOIUrl":null,"url":null,"abstract":"In this work, we present two new methods for variational quantum circuit (VQC) process tomography (PT) onto n qubits systems: unitary PT based on VQCs (PT_VQC) and unitary evolution-based variational quantum singular value decomposition (U-VQSVD). Compared to the state of the art, PT_VQC halves in each run the required amount of qubits for unitary PT and decreases the required state initializations from 4n to just 2n, all while ensuring high-fidelity reconstruction of the targeted unitary channel U. It is worth noting that, for a fixed reconstruction accuracy, PT_VQC achieves faster convergence per iteration step compared to quantum deep neural network and tensor network schemes. The novel U-VQSVD algorithm utilizes variational singular value decomposition to extract eigenvectors (up to a global phase) and their associated eigenvalues from an unknown unitary representing a universal channel. We assess the performance of U-VQSVD by executing an attack on a non-unitary channel quantum physical unclonable function. By using U-VQSVD we outperform an uninformed impersonation attack (using randomly generated input states) by a factor of 2 to 5, depending on the qubit dimension. For the two presented methods, we propose a new approach to calculate the complexity of the displayed VQC, based on what we denote as optimal depth.","PeriodicalId":19181,"journal":{"name":"New Journal of Physics","volume":"17 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1367-2630/ad5df1","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we present two new methods for variational quantum circuit (VQC) process tomography (PT) onto n qubits systems: unitary PT based on VQCs (PT_VQC) and unitary evolution-based variational quantum singular value decomposition (U-VQSVD). Compared to the state of the art, PT_VQC halves in each run the required amount of qubits for unitary PT and decreases the required state initializations from 4n to just 2n, all while ensuring high-fidelity reconstruction of the targeted unitary channel U. It is worth noting that, for a fixed reconstruction accuracy, PT_VQC achieves faster convergence per iteration step compared to quantum deep neural network and tensor network schemes. The novel U-VQSVD algorithm utilizes variational singular value decomposition to extract eigenvectors (up to a global phase) and their associated eigenvalues from an unknown unitary representing a universal channel. We assess the performance of U-VQSVD by executing an attack on a non-unitary channel quantum physical unclonable function. By using U-VQSVD we outperform an uninformed impersonation attack (using randomly generated input states) by a factor of 2 to 5, depending on the qubit dimension. For the two presented methods, we propose a new approach to calculate the complexity of the displayed VQC, based on what we denote as optimal depth.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
变异单元量子过程层析的最佳深度和新方法
在这项工作中,我们提出了两种用于 n 量子比特系统的变分量子电路(VQC)过程层析(PT)的新方法:基于 VQC 的单元 PT(PT_VQC)和基于单元演化的变分量子奇异值分解(U-VQSVD)。值得注意的是,与量子深度神经网络和张量网络方案相比,在固定的重构精度下,PT_VQC 每迭代步的收敛速度更快。新颖的 U-VQSVD 算法利用变异奇异值分解从代表通用信道的未知单元中提取特征向量(直到全局相位)及其相关特征值。我们通过对非单元信道量子物理不可克隆函数实施攻击来评估 U-VQSVD 的性能。通过使用 U-VQSVD,我们的性能比无信息冒充攻击(使用随机生成的输入状态)高出 2 到 5 倍,具体取决于量子比特维度。对于所介绍的两种方法,我们提出了一种新方法来计算所显示的 VQC 的复杂度,我们将其称为最佳深度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
New Journal of Physics
New Journal of Physics 物理-物理:综合
CiteScore
6.20
自引率
3.00%
发文量
504
审稿时长
3.1 months
期刊介绍: New Journal of Physics publishes across the whole of physics, encompassing pure, applied, theoretical and experimental research, as well as interdisciplinary topics where physics forms the central theme. All content is permanently free to read and the journal is funded by an article publication charge.
期刊最新文献
Higher-order topological phase with subsystem symmetries Engineering quasi-bound states in the continuum in asymmetric waveguide gratings Bipartite OTOC in open quantum systems: information scrambling and irreversibility Coherent electron phase-space manipulation by combined elastic and inelastic light-electron scattering Design principles for > 90 % ...
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1