{"title":"Structural features of steel pulsed laser treatment within a permanent magnetic field","authors":"G. I. Brover, E. E. Shcherbakova","doi":"10.1007/s11015-024-01734-1","DOIUrl":null,"url":null,"abstract":"<div><p>It is shown that laser melting of a steel surface within a permanent magnetic field enhances the Marangoni effect, i.e., it intensifies metal mixing up to removing part of a thin liquid metal layer from an irradiated surface. It is established that during laser thermomagnetic treatment under the action of Lorentz forces the depth of hardened layer increases by 15–25%. It is established by calculation that during laser processing within a permanent magnetic field under action of the Righi-Leduc effect, temperature gradients, the level of thermal stresses and degree of metal local plastic deformation within the irradiated zones decrease. This leads to a reduction in steel surface layer hardness by 15–20% compared with laser hardening without applying a magnetic field. It is shown that during laser thermomagnetic treatment, under magnetostrictive effects action, partial decomposition of laser-hardened martensite proceeds with dispersed carbide hardening action. As a result of occurrence of independent low-temperature tempering within steel there is a reduction in structural stresses and the danger of crack formation.</p></div>","PeriodicalId":702,"journal":{"name":"Metallurgist","volume":"68 3","pages":"345 - 353"},"PeriodicalIF":0.8000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgist","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11015-024-01734-1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
It is shown that laser melting of a steel surface within a permanent magnetic field enhances the Marangoni effect, i.e., it intensifies metal mixing up to removing part of a thin liquid metal layer from an irradiated surface. It is established that during laser thermomagnetic treatment under the action of Lorentz forces the depth of hardened layer increases by 15–25%. It is established by calculation that during laser processing within a permanent magnetic field under action of the Righi-Leduc effect, temperature gradients, the level of thermal stresses and degree of metal local plastic deformation within the irradiated zones decrease. This leads to a reduction in steel surface layer hardness by 15–20% compared with laser hardening without applying a magnetic field. It is shown that during laser thermomagnetic treatment, under magnetostrictive effects action, partial decomposition of laser-hardened martensite proceeds with dispersed carbide hardening action. As a result of occurrence of independent low-temperature tempering within steel there is a reduction in structural stresses and the danger of crack formation.
期刊介绍:
Metallurgist is the leading Russian journal in metallurgy. Publication started in 1956.
Basic topics covered include:
State of the art and development of enterprises in ferrous and nonferrous metallurgy and mining;
Metallurgy of ferrous, nonferrous, rare, and precious metals; Metallurgical equipment;
Automation and control;
Protection of labor;
Protection of the environment;
Resources and energy saving;
Quality and certification;
History of metallurgy;
Inventions (patents).