Spin Resolved Zero-Line Modes in Minimally Twisted Bilayer Graphene from Exchange Field and Gate Voltage

IF 3.5 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Chinese Physics Letters Pub Date : 2024-06-30 DOI:10.1088/0256-307x/41/7/077301
Sanyi You, Jiaqi An and Zhenhua Qiao
{"title":"Spin Resolved Zero-Line Modes in Minimally Twisted Bilayer Graphene from Exchange Field and Gate Voltage","authors":"Sanyi You, Jiaqi An and Zhenhua Qiao","doi":"10.1088/0256-307x/41/7/077301","DOIUrl":null,"url":null,"abstract":"The reliance on spin-orbit coupling or strong magnetic fields has always posed significant challenges for the mass production and even laboratory realization of most topological materials. Valley-based topological zero-line modes have attracted widespread attention due to their substantial advantage of being initially realizable with just an external electric field. However, the uncontrollable nature of electrode alignment and precise fabrication has greatly hindered the advancement in this field. By utilizing minimally twisted bilayer graphene and introducing exchange fields from magnetic substrates, we successfully realize a spin-resolved, electrode-free topological zero-line mode. Further integration of electrodes that do not require alignment considerations significantly enhances the tunability of the system’s band structure. Our approach offers a promising new support for the dazzling potential of topological zero-line mode in the realm of low-energy-consumption electronics.","PeriodicalId":10344,"journal":{"name":"Chinese Physics Letters","volume":"23 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/0256-307x/41/7/077301","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The reliance on spin-orbit coupling or strong magnetic fields has always posed significant challenges for the mass production and even laboratory realization of most topological materials. Valley-based topological zero-line modes have attracted widespread attention due to their substantial advantage of being initially realizable with just an external electric field. However, the uncontrollable nature of electrode alignment and precise fabrication has greatly hindered the advancement in this field. By utilizing minimally twisted bilayer graphene and introducing exchange fields from magnetic substrates, we successfully realize a spin-resolved, electrode-free topological zero-line mode. Further integration of electrodes that do not require alignment considerations significantly enhances the tunability of the system’s band structure. Our approach offers a promising new support for the dazzling potential of topological zero-line mode in the realm of low-energy-consumption electronics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从交换场和栅极电压看最小扭曲双层石墨烯的自旋分辨零线模式
对自旋轨道耦合或强磁场的依赖一直给大多数拓扑材料的大规模生产甚至实验室实现带来巨大挑战。基于山谷的拓扑零线模式吸引了广泛的关注,因为它们具有只需外部电场就能初步实现的巨大优势。然而,电极排列和精确制造的不可控性极大地阻碍了这一领域的发展。通过利用最小扭曲的双层石墨烯和引入磁性基底的交换场,我们成功实现了自旋分辨的无电极拓扑零线模式。进一步集成无需对准考虑的电极,可显著增强系统带状结构的可调性。我们的方法为拓扑零线模式在低能耗电子学领域的巨大潜力提供了前景广阔的新支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chinese Physics Letters
Chinese Physics Letters 物理-物理:综合
CiteScore
5.90
自引率
8.60%
发文量
13238
审稿时长
4 months
期刊介绍: Chinese Physics Letters provides rapid publication of short reports and important research in all fields of physics and is published by the Chinese Physical Society and hosted online by IOP Publishing.
期刊最新文献
Dual MAPK Inhibition Triggers Pro-inflammatory Signals and Sensitizes BRAF V600E Glioma to T Cell-Mediated Checkpoint Therapy. Simulating a Chern Insulator with C = ±2 on Synthetic Floquet Lattice Rydberg-Induced Topological Solitons in Three-Dimensional Rotation Spin–Orbit-Coupled Bose–Einstein Condensates Multiple Soliton Asymptotics in a Spin-1 Bose–Einstein Condensate Pc(4457) Interpreted as a JP = 1/2+ State by D¯0Λc+(2595) – π0Pc(4312)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1