{"title":"Are microbes colimited by multiple resources?","authors":"Noelle A Held , Michael Manhart","doi":"10.1016/j.mib.2024.102509","DOIUrl":null,"url":null,"abstract":"<div><p>Resource colimitation — the dependence of growth on multiple resources simultaneously — has become an important topic in microbiology due both to the development of systems approaches to cell physiology and ecology and to the relevance of colimitation to environmental science, biotechnology, and human health. Empirical tests of colimitation in microbes suggest that it may be common in nature. However, recent theoretical and empirical work has demonstrated the need for systematic measurements across resource conditions, in contrast to the factorial supplementation experiments used in most previous studies. The mechanistic causes of colimitation remain unclear in most cases and are an important challenge for future work, but we identify the alignment of resource consumption with the environment, interactions between resources, and biological and environmental heterogeneity as major factors. On the other hand, the consequences of colimitation are widespread for microbial physiology and ecology, especially the prediction and control of microbial growth, motivating continued consideration of this state in microbiology.</p></div>","PeriodicalId":10921,"journal":{"name":"Current opinion in microbiology","volume":"80 ","pages":"Article 102509"},"PeriodicalIF":5.9000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1369527424000857/pdfft?md5=53d76f47d4a4ad9f4badcb17e9aee781&pid=1-s2.0-S1369527424000857-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in microbiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369527424000857","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Resource colimitation — the dependence of growth on multiple resources simultaneously — has become an important topic in microbiology due both to the development of systems approaches to cell physiology and ecology and to the relevance of colimitation to environmental science, biotechnology, and human health. Empirical tests of colimitation in microbes suggest that it may be common in nature. However, recent theoretical and empirical work has demonstrated the need for systematic measurements across resource conditions, in contrast to the factorial supplementation experiments used in most previous studies. The mechanistic causes of colimitation remain unclear in most cases and are an important challenge for future work, but we identify the alignment of resource consumption with the environment, interactions between resources, and biological and environmental heterogeneity as major factors. On the other hand, the consequences of colimitation are widespread for microbial physiology and ecology, especially the prediction and control of microbial growth, motivating continued consideration of this state in microbiology.
期刊介绍:
Current Opinion in Microbiology is a systematic review journal that aims to provide specialists with a unique and educational platform to keep up-to-date with the expanding volume of information published in the field of microbiology. It consists of 6 issues per year covering the following 11 sections, each of which is reviewed once a year:
Host-microbe interactions: bacteria
Cell regulation
Environmental microbiology
Host-microbe interactions: fungi/parasites/viruses
Antimicrobials
Microbial systems biology
Growth and development: eukaryotes/prokaryotes